h2o2 <- rep(c(0,10,25,50), each=3)
h2o2
## [1] 0 0 0 10 10 10 25 25 25 50 50 50
pf3d7 <- c(0.3399,0.3563,0.3538,
0.3168,0.3054,0.3174,
0.2460,0.2618,0.2848,
0.1535,0.1613,0.1525)
pf3d7
## [1] 0.3399 0.3563 0.3538 0.3168 0.3054 0.3174 0.2460 0.2618 0.2848 0.1535 0.1613 0.1525
Plot the data, and add the least squares fit line.
plot(h2o2, pf3d7, xlab="H2O2 concentration", ylab="OD")
abline(lsfit(h2o2, pf3d7), col="red", lty=2)
lm.out <- lm(pf3d7 ~ h2o2)
lm.out
##
## Call:
## lm(formula = pf3d7 ~ h2o2)
##
## Coefficients:
## (Intercept) h2o2
## 0.353050 -0.003871
lm.sum <- summary(lm.out)
lm.sum
##
## Call:
## lm(formula = pf3d7 ~ h2o2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.013150 -0.007486 0.001275 0.003107 0.028525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3530501 0.0049955 70.67 7.84e-15 ***
## h2o2 -0.0038710 0.0001759 -22.00 8.43e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01148 on 10 degrees of freedom
## Multiple R-squared: 0.9798, Adjusted R-squared: 0.9777
## F-statistic: 484.1 on 1 and 10 DF, p-value: 8.426e-10
attributes(lm.sum)
## $names
## [1] "call" "terms" "residuals" "coefficients" "aliased" "sigma"
## [7] "df" "r.squared" "adj.r.squared" "fstatistic" "cov.unscaled"
##
## $class
## [1] "summary.lm"
The table of coefficients.
lm.sum$coef
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.353050073 0.0049955194 70.67335 7.844454e-15
## h2o2 -0.003870984 0.0001759324 -22.00268 8.426407e-10
The parameter estimates.
lm.sum$coef[,1]
## (Intercept) h2o2
## 0.353050073 -0.003870984
The residual standard deviation.
lm.sum$sigma
## [1] 0.01147782
To avoid data glitches, it is a good habit to make a data frame.
dat <- data.frame(conc=h2o2, od=pf3d7)
dat
## conc od
## 1 0 0.3399
## 2 0 0.3563
## 3 0 0.3538
## 4 10 0.3168
## 5 10 0.3054
## 6 10 0.3174
## 7 25 0.2460
## 8 25 0.2618
## 9 25 0.2848
## 10 50 0.1535
## 11 50 0.1613
## 12 50 0.1525
str(dat)
## 'data.frame': 12 obs. of 2 variables:
## $ conc: num 0 0 0 10 10 10 25 25 25 50 ...
## $ od : num 0.34 0.356 0.354 0.317 0.305 ...
plot(dat$conc, dat$od, xlab="H2O2 concentration", ylab="OD")
abline(lsfit(dat$conc, dat$od), col="red", lty=2)
lm.out <- lm(od ~ conc, data=dat)
summary(lm.out)
##
## Call:
## lm(formula = od ~ conc, data = dat)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.013150 -0.007486 0.001275 0.003107 0.028525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3530501 0.0049955 70.67 7.84e-15 ***
## conc -0.0038710 0.0001759 -22.00 8.43e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.01148 on 10 degrees of freedom
## Multiple R-squared: 0.9798, Adjusted R-squared: 0.9777
## F-statistic: 484.1 on 1 and 10 DF, p-value: 8.426e-10
confint(lm.out)
## 2.5 % 97.5 %
## (Intercept) 0.341919363 0.364180784
## conc -0.004262986 -0.003478982
confint(lm.out, level=0.99)
## 0.5 % 99.5 %
## (Intercept) 0.337217910 0.368882237
## conc -0.004428562 -0.003313406
lm.out$fitted
## 1 2 3 4 5 6 7 8 9 10 11
## 0.3530501 0.3530501 0.3530501 0.3143402 0.3143402 0.3143402 0.2562755 0.2562755 0.2562755 0.1595009 0.1595009
## 12
## 0.1595009
lm.out$residuals
## 1 2 3 4 5 6 7
## -0.0131500734 0.0032499266 0.0007499266 0.0024597651 -0.0089402349 0.0030597651 -0.0102754772
## 8 9 10 11 12
## 0.0055245228 0.0285245228 -0.0060008811 0.0017991189 -0.0070008811
Alternatively, there are also generic functions.
fitted(lm.out)
## 1 2 3 4 5 6 7 8 9 10 11
## 0.3530501 0.3530501 0.3530501 0.3143402 0.3143402 0.3143402 0.2562755 0.2562755 0.2562755 0.1595009 0.1595009
## 12
## 0.1595009
residuals(lm.out)
## 1 2 3 4 5 6 7
## -0.0131500734 0.0032499266 0.0007499266 0.0024597651 -0.0089402349 0.0030597651 -0.0102754772
## 8 9 10 11 12
## 0.0055245228 0.0285245228 -0.0060008811 0.0017991189 -0.0070008811
The residual qq plot.
qqnorm(lm.out$residuals, main="")
qqline(lm.out$residuals, col="blue", lty=2)
Fitted values versus residuals.
plot(lm.out$fitted, lm.out$residuals, pch=1, xlab="fitted values", ylab="residuals")
abline(h=0, col="blue", lty=2)