
Analysis of Variance

The sample mean and variance

Let X 1, X 2, . . . , X n be independent, identically distributed (iid).

• The sample mean was defined as

X̄ =

∑

X i

n

• The sample variance was defined as

S2 =

∑

(X i − X̄)2

n − 1

I haven’t spoken much about variances (I generally prefer looking at the SD), but

we are about to start making use of them!



The distribution of the sample variance

If X 1, X 2, . . . , X n are iid Normal (mean=µ, var=σ2),

then the sample variance S2 satisfies (n – 1) S2/σ2 ∼ χ2
n–1

−→ When the X i are not normally distributed, this is not true.

χ2 distributions
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Let W ∼ χ2(df = n − 1)

E(W) = n–1

var(W) = 2(n–1)

SD(W) =
√

2(n − 1)

The F distribution

Let Z1 ∼ χ2
m, and Z2 ∼ χ2

n. Assume Z1 and Z2 are independent.

−→ Then
Z1/m

Z2/n
∼ Fm,n

F distributions
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The distribution of the sample variance ratio

Let X 1, X 2, . . . , X m be iid Normal (µx, σ
2
x).

Let Y 1, Y 2, . . . , Y n be iid Normal (µy, σ
2
y).

Then (m – 1) × S2
x/σ

2
x ∼ χ2

m–1 and (n – 1) × S2
y/σ

2
y ∼ χ2

n–1.

Hence

S2
x/σ

2
x

S2
y/σ

2
y

∼ Fm–1,n–1

or equivalently

S2
x

S2
y

∼
σ2

x

σ2
y

× Fm–1,n–1

Hypothesis testing

Let X 1, X 2, . . . , X m be iid Normal (µx, σ
2
x).

Let Y 1, Y 2, . . . , Y n be iid Normal (µy, σ
2
y).

We want to test H0: σ2
x = σ2

y versus Ha: σ2
x %= σ2

y

−→ Under the null hypothesis S2
x/S2

y ∼ Fm–1,n–1



Example

treatment response
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Are the variances the same in the two groups?

Example

We want to test H0: σ2
A = σ2

B versus Ha: σ2
A %= σ2

B

−→ At the 5% level, we reject the null hypothesis if our test statistic, the ratio of
the sample variances (treatment group A versus B), is below 0.25 or above
4.03.

The ratio of the sample variances in our example is 2.14. We
therefore do not reject the null hypothesis.

F distribution df=(9,9)
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Confidence interval for the variance ratio

Let X 1, X 2, . . . , X m be iid Normal (µx, σ
2
x).

Let Y 1, Y 2, . . . , Y n be iid Normal (µy, σ
2
y). X,Y independent.

S2
x/σ

2
x

S2
y/σ

2
y

∼ Fm–1,n–1

Let L be the 2.5th and U be the 97.5th percentile of F(m–1, n–1).

−→ Pr{L < (S2
x/σ

2
x)/(S

2
y/σ

2
y) < U} = 95%.

−→ Pr{(S2
x/S2

y)/U < σ2
x/σ

2
y < (S2

x/S2
y)/L} = 95%.

Thus, the interval { (S2
x/S2

y)/ U , (S2
x/S2

y)/ L }
is a 95% confidence interval for σ2

x/σ
2
y.

Example

m = 10; n = 10.

2.5th and 97.5th percentiles of F(9,9) are 0.248 and 4.026.

Note that, since m = n, L = 1/U.

s2
x/s2

y = 2.14

−→ The 95% confidence interval for σ2
x/σ

2
y is

( 2.14 / 4.026, 2.14 / 0.248 ) = (0.53, 8.6)

How about a 95% confidence interval for σx/σy?



Blood coagulation time

T avg

A 62 60 63 59 61

B 63 67 71 64 65 66 66

C 68 66 71 67 68 68 68

D 56 62 60 61 63 64 63 59 61

64

Blood coagulation time

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

Coagulation Time

Diet A

Diet B

Diet C

Diet D

Combined



Notation

Assume we have k treatment groups.

nt number of cases in treatment group t

N number of cases (overall)

Yti response i in treatment group t

Ȳt· average response in treatment group t

Ȳ·· average response (overall)

Estimating the variability

We assume that the data are random samples from four normal
distributions having the same variance σ2, differing only (if at all)
in their means.

We can estimate the variance σ2 for each treatment t, using the
sum of squared differences from the averages within each group.

Define, for treatment group t,

St=
nt
∑

i = 1

(Yti − Ȳt·)
2.

Then

E(St)=(nt – 1) × σ2.



Within group variability

The within-group sum of squares is the sum of all treatment sum
of squares:

SW=S1 + · · · + Sk=
∑

t

∑

i

(Yti − Ȳt·)
2

The within-group mean square is defined as

MW=
S1 + · · · + Sk

(n1 – 1) + · · · + (nk – 1)
=

SW

N − k
=

∑

t

∑

i (Yti − Ȳt·)
2

N − k

It is our first estimator of σ2.

Between group variability

The between-group sum of squares is

SB=
k

∑

t = 1

nt(Ȳt· − Ȳ··)
2

The between-group mean square is defined as

MB=
SB

k − 1
=

∑

t nt(Ȳt· − Ȳ··)
2

k − 1

It is our second estimator of σ2.

That is, if there is no treatment effect!



Important facts

The following are facts that we will exploit later for some formal
hypothesis testing:

• The distribution of SW/σ2 is χ2(df=N-k)

• The distribution of SB/σ2 is χ2(df=k-1) if there is no treatment effect!

• SW and SB are independent

Variance contributions

∑

t

∑

i

(Yti − Ȳ··)
2 =

∑

t

nt(Ȳt· − Ȳ··)
2 +

∑

t

∑

i

(Yti − Ȳt·)
2

ST = SB + SW

N – 1 = k – 1 + N – k



ANOVA table

source sum of squares df mean square

between treatments SB=
∑

t

nt(Ȳt· − Ȳ··)
2 k – 1 MB=SB/(k – 1)

within treatments SW=
∑

t

∑

i

(Yti − Ȳt·)
2 N – k MW=SW/(N – k)

total ST=
∑

t

∑

i

(Yti − Ȳ··)
2 N – 1

Example

source sum of squares df mean square

between treatments 228 3 76.0

within treatments 112 20 5.6

total 340 23



The ANOVA model

We write Yti = µt + εti with εti ∼ iid N(0,σ2).

Using τt = µt − µ we can also write

Yti = µ + τt + εti.

The corresponding analysis of the data is

yti = ȳ·· + (ȳt· − ȳ··) + (yti − ȳt·)

The ANOVA model

Three different ways to describe the model:

A. Yti independent with Yti ∼ N(µt, σ2)

B. Yti = µt + εti where εti ∼ iid N(0, σ2)

C. Yti = µ + τt + εti where εti ∼ iid N(0, σ2) and
∑

t τt = 0



Hypothesis testing

We assume

Yti = µ + τt + εti with εti ∼ iid N(0,σ2).

Equivalently, Yti ∼ independent N(µt, σ2)

We want to test

H0 : τ1= · · ·=τk=0 versus Ha : H0 is false.

Equivalently, H0 : µ1= . . .=µk

For this, we use a one-sided F test.

Another fact

It can be shown that

E(MB)=σ2 +

∑

t ntτ2
t

k – 1

Therefore

E(MB)=σ2 if H0 is true

E(MB) > σ2 if H0 is false



Recipe for the hypothesis test

Under H0 we have

MB

MW
∼ Fk – 1, N – k.

Therefore

• Calculate MB and MW.

• Calculate MB/MW.

• Calculate a p-value using MB/MW as test statistic, using the
right tail of an F distribution with k – 1 and N – k degrees of
freedom.

Example (cont)

H0 : τ1=τ2=τ3=τ4=0 versus Ha : H0 is false.

MB = 76, MW =5.6, therefore MB/MW = 13.57.

Using an F distribution with 3 and 20 degrees of freedom, we get
a pretty darn low p-value. Therefore, we reject the null hypothesis.

0 2 4 6 8 10 12 14

MB MW

F(3,20)

The R function aov() does all these calculations for you!



Example

For each of 8 mothers and 8 fathers, we observe (estimates of)
the number of crossovers, genome-wide, in a set of independent
meiotic products.

−→ Do the fathers (or mothers) vary in the number of crossovers
they deliver?

Female meioses

25 30 35 40 45 50 55 60

Total no. crossovers

102
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1416
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m
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Male meioses

15 20 25 30

Total no. crossovers

102

884

1331

1332

1347

1362

1413

1416
Fa

m
ily

ANOVA tables

Female meioses:

source SS df MS F P-value
between families 1485 7 212.2 4.60 0.0002
within families 3873 84 46.1
total 5358 91

Male meioses:

source SS df MS F P-value
between families 114 7 16.3 1.23 0.30
within families 1112 84 13.2
total 1226 91



Permutation test

The P-values calculated above are based on the assumption that
the measurements in the underlying populations are normally dis-
tributed.

Alternatively, one may use a permutation test to obtain P-values:

1. Permute (shuffle) the XO counts relative to the family IDs.

2. Re-calculate the F statistic.

3. Repeat (1) and (2) many times (1000 or 10,000 times, say).

4. Estimate the P-value as the proportion of the F statistics
from permuted data that are bigger or equal to the observed
F statistic.

Female meioses

F statistic

0 1 2 3 4 5

Permutation dist’n : Females

P̂ = 0

Observed



Male meioses

F statistic

0 1 2 3 4 5

Permutation dist’n : Males

P̂ = 32%

Observed

Another example

treatment response

200 400 600 800 1000 1200 1400 1600 1800 2000

B

A

Are the population means the same?

By now, we know two ways of testing that:

Two-sample t-test, and ANOVA with two treatments.

−→ But do they give similar results?



ANOVA table

source sum of squares df mean square

between treatments SB=
∑

t

nt(Ȳt· − Ȳ··)
2 k – 1 MB=SB/(k – 1)

within treatments SW=
∑

t

∑

i

(Yti − Ȳt·)
2 N – k MW=SW/(N – k)

total ST=
∑

t

∑

i

(Yti − Ȳ··)
2 (N – 1)

ANOVA for two groups

The ANOVA test statistic is MB/MW, with

MB=n1(Ȳ1 − Ȳ··)
2 + n2(Ȳ2 − Ȳ··)

2

and

MW=

∑n1

i = 1 (Y1i − Ȳ1)2 +
∑n2

i = 1 (Y2i − Ȳ2)2

n1 + n2 − 2



Two-sample t-test

The test statistic for the two sample t-test is

t=
Ȳ1 − Ȳ2

s
√

1/n1 + 1/n2

with

s2=

∑n1

i = 1 (Y1i − Ȳ1)2 +
∑n2

i = 1 (Y2i − Ȳ2)2

n1 + n2 − 2

This also assumes equal variance within the groups!

Result

MB

MW
=t2



Reference distributions

If there was no difference in means, then

MB

MW
∼ F1,n1+n2−2

t ∼ tn1+n2−2

Now does this mean F1,n1+n2−2=(tn1+n2−2)2 ?

A few facts

F1,k = t2k

Fk,∞ =
χ2

k

k

N(0,1)2 = χ2
1 = F1,∞ = t2∞



Fixed effects

Underlying group dist’ns

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

Standard ANOVA model

Data

Random effects

Underlying group dist’ns

µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8

Random effects
model

Dataµ

Dist’n of group means

Observed underlying
group means



The random effects model

Two different ways to describe the model:

A. µt ∼ iid N(µ, σ2
A)

Yti = µt + εti where εti ∼ iid N(0, σ2)

B. τt ∼ iid N(0, σ2
A)

Yti = µ + τt + εti where εti ∼ iid N(0, σ2)

−→ We add another layer of sampling.

Hypothesis testing

→ In the standard ANOVA model, we considered the µt as fixed
but unknown quantities.

We test the hypothesis H0 : µ1 = · · · = µk (versus H0 is
false) using the statistic MB/MW from the ANOVA table and
the comparing this to an F(k – 1, N – k) distribution.

→ In the random effects model, we consider the µt as random
draws from a normal distribution with mean µ and variance σ2

A.

We seek to test the hypothesis H0 : σ2
A = 0 versus Ha : σ2

A > 0.

As it turns out, we end up with the same test statistic and same
null distribution. For one-way ANOVA, that is!



Estimation

For the random effects model it can be shown that

E(MB)=σ2 + n0 × σ2
A

where

n0=
1

k – 1

(

N −
∑

t n
2
t

∑

t nt

)

Recall also that E(MW) = σ2.

Thus, we may estimate σ2 by σ̂2 = MW.

And we may estimate σ2
A by σ̂2

A = (MB − MW)/n0

(provided that this is ≥ 0).

The first example

The samples sizes for the 8 families were (14, 12, 11, 10, 10, 11,
15, 9), for a total sample size of 92.

Thus, n0 ≈ 11.45.

For the female meioses, MB = 212 and MW = 46. Thus

σ̂ =
√

46 = 6.8 −→ overall sample mean = 40.3

σ̂A =
√

(212 − 46)/11.45 = 3.81.

For the male meioses, MB = 16.3 and MW = 13.2. Thus

σ̂ =
√

13.2 = 3.6 −→ overall sample mean = 22.8

σ̂A =
√

(16.3 − 13.2)/11.45 = 0.52.


