Analysis of Variance

The sample mean and variance

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed (iid).

- The sample mean was defined as

$$
\bar{x}=\frac{\sum X_{i}}{n}
$$

- The sample variance was defined as

$$
S^{2}=\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

I haven't spoken much about variances (I generally prefer looking at the SD), but we are about to start making use of them!

The distribution of the sample variance

If $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid Normal (mean $=\mu$, var $=\sigma^{2}$), then the sample variance S^{2} satisfies $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$
\longrightarrow When the X_{i} are not normally distributed, this is not true.
χ^{2} distributions

Let $\mathrm{W} \sim \chi^{2}(\mathrm{df}=\mathrm{n}-1)$

$$
\begin{aligned}
& E(W)=n-1 \\
& \operatorname{var}(W)=2(n-1) \\
& S D(W)=\sqrt{2(n-1)}
\end{aligned}
$$

The F distribution

Let $Z_{1} \sim \chi_{m}^{2}$, and $Z_{2} \sim \chi_{n}^{2}$. Assume Z_{1} and Z_{2} are independent.
$\longrightarrow \quad$ Then $\quad \frac{Z_{1} / m}{Z_{2} / n} \sim F_{m, n}$

F distributions

The distribution of the sample variance ratio

Let $X_{1}, X_{2}, \ldots, X_{\mathrm{m}}$ be iid $\operatorname{Normal}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$.
Let $Y_{1}, Y_{2}, \ldots, Y_{\mathrm{n}}$ be iid $\operatorname{Normal}\left(\mu_{\mathrm{y}}, \sigma_{\mathrm{y}}^{2}\right)$.

Then $\quad(m-1) \times S_{x}^{2} / \sigma_{x}^{2} \sim \chi_{m-1}^{2} \quad$ and $\quad(n-1) \times S_{y}^{2} / \sigma_{y}^{2} \sim \chi_{n-1}^{2}$.

Hence

$$
\frac{S_{x}^{2} / \sigma_{x}^{2}}{S_{y}^{2} / \sigma_{y}^{2}} \sim F_{m-1, n-1}
$$

or equivalently

$$
\frac{S_{x}^{2}}{S_{y}^{2}} \sim \frac{\sigma_{x}^{2}}{\sigma_{y}^{2}} \times F_{m-1, n-1}
$$

Hypothesis testing

Let $X_{1}, X_{2}, \ldots, X_{\mathrm{m}}$ be iid $\operatorname{Normal}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$.
Let $Y_{1}, Y_{2}, \ldots, Y_{\mathrm{n}}$ be iid $\operatorname{Normal}\left(\mu_{\mathrm{y}}, \sigma_{\mathrm{y}}^{2}\right)$.

We want to test $\quad \mathrm{H}_{0}: \sigma_{\mathrm{x}}^{2}=\sigma_{\mathrm{y}}^{2} \quad$ versus $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{x}}^{2} \neq \sigma_{\mathrm{y}}^{2}$
$\longrightarrow \quad$ Under the null hypothesis $\quad S_{x}^{2} / S_{y}^{2} \sim F_{m-1, n-1}$

Example

Are the variances the same in the two groups?

Example

We want to test $\quad \mathrm{H}_{0}: \sigma_{\mathrm{A}}^{2}=\sigma_{\mathrm{B}}^{2}$ versus $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{A}}^{2} \neq \sigma_{\mathrm{B}}^{2}$
\longrightarrow At the 5% level, we reject the null hypothesis if our test statistic, the ratio of the sample variances (treatment group A versus B), is below 0.25 or above 4.03.

The ratio of the sample variances in our example is 2.14 . We therefore do not reject the null hypothesis.

F distribution $\mathrm{df}=(\mathbf{9 , 9})$

Confidence interval for the variance ratio

Let $X_{1}, X_{2}, \ldots, X_{\mathrm{m}}$ be iid $\operatorname{Normal}\left(\mu_{\mathrm{x}}, \sigma_{\mathrm{x}}^{2}\right)$.
Let $Y_{1}, Y_{2}, \ldots, Y_{\mathrm{n}}$ be iid $\operatorname{Normal}\left(\mu_{\mathrm{y}}, \sigma_{\mathrm{y}}^{2}\right) . \quad X, Y$ independent.

$$
\frac{S_{x}^{2} / \sigma_{x}^{2}}{S_{y}^{2} / \sigma_{y}^{2}} \sim F_{m-1, n-1}
$$

Let L be the $2.5^{\text {th }}$ and U be the $97.5^{\text {th }}$ percentile of $F(m-1, n-1)$.
$\longrightarrow \operatorname{Pr}\left\{\mathrm{L}<\left(\mathrm{S}_{\mathrm{x}}^{2} / \sigma_{\mathrm{x}}^{2}\right) /\left(\mathrm{S}_{\mathrm{y}}^{2} / \sigma_{\mathrm{y}}^{2}\right)<\mathrm{U}\right\}=95 \%$.
$\longrightarrow \operatorname{Pr}\left\{\left(\mathrm{S}_{\mathrm{x}}^{2} / \mathrm{S}_{\mathrm{y}}^{2}\right) / \mathrm{U}<\sigma_{\mathrm{x}}^{2} / \sigma_{\mathrm{y}}^{2}<\left(\mathrm{S}_{\mathrm{x}}^{2} / \mathrm{S}_{\mathrm{y}}^{2}\right) / \mathrm{L}\right\}=95 \%$.

Thus, the interval $\left\{\left(S_{x}^{2} / S_{y}^{2}\right) / \cup,\left(S_{x}^{2} / S_{y}^{2}\right) / L\right\}$
is a 95% confidence interval for $\sigma_{\mathrm{x}}^{2} / \sigma_{\mathrm{y}}^{2}$.

Example

$m=10 ; n=10$.
$2.5^{\text {th }}$ and $97.5^{\text {th }}$ percentiles of $F(9,9)$ are 0.248 and 4.026.
Note that, since $m=n, L=1 / U$.
$s_{x}^{2} / s_{y}^{2}=2.14$
\longrightarrow The 95% confidence interval for $\sigma_{x}^{2} / \sigma_{y}^{2}$ is
$(2.14 / 4.026,2.14 / 0.248)=(0.53,8.6)$

How about a 95% confidence interval for $\sigma_{\mathrm{x}} / \sigma_{\mathrm{y}}$?

Blood coagulation time

T	avg	
A	62606359	61
B	636771646566	66
C	686671676868	68
D	5662606163646359	61

Blood coagulation time

Notation

Assume we have k treatment groups.
$n_{t} \quad$ number of cases in treatment group t
N number of cases (overall)
Y_{ti} response i in treatment group t
\bar{Y}_{t}. average response in treatment group t
$\bar{Y} . \quad$ average response (overall)

Estimating the variability

We assume that the data are random samples from four normal distributions having the same variance σ^{2}, differing only (if at all) in their means.

We can estimate the variance σ^{2} for each treatment t , using the sum of squared differences from the averages within each group.

Define, for treatment group t ,

$$
S_{t}=\sum_{i=1}^{n_{t}}\left(Y_{t i}-\bar{Y}_{t}\right)^{2}
$$

Then

$$
E\left(S_{t}\right)=\left(n_{t}-1\right) \times \sigma^{2} .
$$

Within group variability

The within-group sum of squares is the sum of all treatment sum of squares:

$$
S_{W}=S_{1}+\cdots+S_{k}=\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{t \cdot}\right)^{2}
$$

The within-group mean square is defined as

$$
M_{W}=\frac{S_{1}+\cdots+S_{k}}{\left(n_{1}-1\right)+\cdots+\left(n_{k}-1\right)}=\frac{S_{W}}{N-k}=\frac{\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{t .}\right)^{2}}{N-k}
$$

It is our first estimator of σ^{2}.

Between group variability

The between-group sum of squares is

$$
S_{B}=\sum_{t=1}^{k} n_{t}\left(\bar{Y}_{t}-\bar{Y}_{. .}\right)^{2}
$$

The between-group mean square is defined as

$$
M_{B}=\frac{S_{B}}{k-1}=\frac{\sum_{t} n_{t}\left(\bar{Y}_{t}-\bar{Y}_{. .}\right)^{2}}{k-1}
$$

It is our second estimator of σ^{2}.
That is, if there is no treatment effect!

Important facts

The following are facts that we will exploit later for some formal hypothesis testing:

- The distribution of $\mathrm{S}_{\mathrm{W}} / \sigma^{2}$ is $\chi^{2}(\mathrm{df}=\mathrm{N}-\mathrm{k})$
- The distribution of $\mathrm{S}_{\mathrm{B}} / \sigma^{2}$ is $\chi^{2}(\mathrm{df}=\mathrm{k}-1) \quad$ if there is no treatment effect!
- S_{W} and S_{B} are independent

Variance contributions

$$
\begin{aligned}
& \sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{. .}\right)^{2}=\sum_{t} n_{t}\left(\bar{Y}_{t .}-\bar{Y}_{. .}\right)^{2}+\sum_{t} \sum_{i}\left(Y_{t i}-\bar{Y}_{t .}\right)^{2} \\
& S_{T} \quad=\quad S_{B}+\quad S_{W} \\
& \mathrm{~N}-1 \quad=\quad \mathrm{k}-1+\mathrm{N}-\mathrm{k}
\end{aligned}
$$

ANOVA table

source	sum of squares	$d f$	mean square
between treatments	$\mathrm{S}_{\mathrm{B}}=\sum_{\mathrm{t}} \mathrm{n}_{\mathrm{t}}\left(\bar{Y}_{\mathrm{t} .}-\overline{\mathrm{Y}}_{. .}\right)^{2}$	$\mathrm{k}-1$	$\mathrm{M}_{\mathrm{B}}=\mathrm{S}_{\mathrm{B}} /(\mathrm{k}-1)$
within treatments	$\mathrm{S}_{\mathrm{W}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}_{\mathrm{t} .}\right)^{2}$	$\mathrm{~N}-\mathrm{k}$	$\mathrm{M}_{\mathrm{W}}=\mathrm{S}_{\mathrm{W}} /(\mathrm{N}-\mathrm{k})$
total	$\mathrm{S}_{\mathrm{T}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}_{\mathrm{Y} . .}\right)^{2}$	$\mathrm{~N}-1$	

Example

source	sum of squares	df	mean square
between treatments	228	3	76.0
within treatments	112	20	5.6
total	340	23	

The ANOVA model

We write $\quad \mathrm{Y}_{\mathrm{ti}}=\mu_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \quad$ with $\quad \epsilon_{\mathrm{ti}} \sim \mathrm{iid} \mathrm{N}\left(0, \sigma^{2}\right)$.

Using $\quad \tau_{\mathrm{t}}=\mu_{\mathrm{t}}-\mu \quad$ we can also write

$$
\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}}
$$

The corresponding analysis of the data is

$$
\mathrm{y}_{\mathrm{ti}}=\bar{y}_{. .}+\left(\overline{\mathrm{y}}_{\mathrm{t} .}-\bar{y}_{. . .}\right)+\left(\mathrm{y}_{\mathrm{ti}}-\overline{\mathrm{y}}_{\mathrm{t} .}\right)
$$

The ANOVA model

Three different ways to describe the model:
A. $\quad \mathrm{Y}_{\mathrm{ti}}$ independent with $\mathrm{Y}_{\mathrm{ti}} \sim \mathrm{N}\left(\mu_{\mathrm{t}}, \sigma^{2}\right)$
B. $\mathrm{Y}_{\mathrm{ti}}=\mu_{\mathrm{t}}+\epsilon_{\mathrm{ti}}$ where $\epsilon_{\mathrm{ti}} \sim \operatorname{iid} \mathrm{N}\left(0, \sigma^{2}\right)$
C. $\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}}$ where $\epsilon_{\mathrm{ti}} \sim$ iid $\mathrm{N}\left(0, \sigma^{2}\right)$ and $\sum_{\mathrm{t}} \tau_{\mathrm{t}}=0$

Hypothesis testing

We assume

$$
\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \quad \text { with } \quad \epsilon_{\mathrm{ti}} \sim \mathrm{iid} \mathrm{~N}\left(0, \sigma^{2}\right)
$$

$$
\text { Equivalently, } \mathrm{Y}_{\mathrm{ti}} \sim \text { independent } \mathbf{N}\left(\mu_{\mathrm{t}}, \sigma^{2}\right)
$$

We want to test

$$
\mathrm{H}_{0}: \tau_{1}=\cdots=\tau_{\mathrm{k}}=0 \quad \text { versus } \quad \mathrm{H}_{\mathrm{a}}: \mathrm{H}_{0} \text { is false. }
$$

Equivalently, $\mathrm{H}_{0}: \mu_{1}=\ldots=\mu_{\mathrm{k}}$

For this, we use a one-sided F test.

Another fact

It can be shown that

$$
\mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)=\sigma^{2}+\frac{\sum_{\mathrm{t}} \mathrm{n}_{\mathrm{t}} \tau_{\mathrm{t}}^{2}}{\mathrm{k}-1}
$$

Therefore

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)=\sigma^{2} \text { if } \mathrm{H}_{0} \text { is true } \\
& \mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)>\sigma^{2} \text { if } \mathrm{H}_{0} \text { is false }
\end{aligned}
$$

Recipe for the hypothesis test

Under H_{0} we have

$$
\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{W}}} \sim \mathrm{~F}_{\mathrm{k}-1, \mathrm{~N}-\mathrm{k}} .
$$

Therefore

- Calculate M_{B} and M_{W}.
- Calculate $\mathrm{M}_{\mathrm{B}} / \mathrm{M}_{\mathrm{w}}$.
- Calculate a p-value using M_{B} / M_{W} as test statistic, using the right tail of an F distribution with $\mathrm{k}-1$ and $\mathrm{N}-\mathrm{k}$ degrees of freedom.

Example (cont)

$\mathrm{H}_{0}: \tau_{1}=\tau_{2}=\tau_{3}=\tau_{4}=0$ versus $\mathrm{H}_{\mathrm{a}}: \mathrm{H}_{0}$ is false.
$M_{B}=76, M_{W}=5.6$, therefore $M_{B} / M_{W}=13.57$.
Using an F distribution with 3 and 20 degrees of freedom, we get a pretty darn low p-value. Therefore, we reject the null hypothesis.

Example

For each of 8 mothers and 8 fathers, we observe (estimates of) the number of crossovers, genome-wide, in a set of independent meiotic products.
\longrightarrow Do the fathers (or mothers) vary in the number of crossovers they deliver?

Female meioses

Male meioses

ANOVA tables

Female meioses:

source	SS	df	MS	F	P-value
between families	1485	7	212.2	4.60	0.0002
within families	3873	84	46.1		
total	5358	91			

Male meioses:

source	SS	df	MS	F	P-value
between families	114	7	16.3	1.23	0.30
within families	1112	84	13.2		
total	1226	91			

Permutation test

The P-values calculated above are based on the assumption that the measurements in the underlying populations are normally distributed.

Alternatively, one may use a permutation test to obtain P-values:

1. Permute (shuffle) the XO counts relative to the family IDs.
2. Re-calculate the F statistic.
3. Repeat (1) and (2) many times (1000 or 10,000 times, say).
4. Estimate the P-value as the proportion of the F statistics from permuted data that are bigger or equal to the observed F statistic.

Female meioses

Permutation dist'n : Females

Male meioses

Permutation dist'n : Males

Another example

Are the population means the same?

By now, we know two ways of testing that:
Two-sample t -test, and ANOVA with two treatments.
\longrightarrow But do they give similar results?

ANOVA table

source
sum of squares
df
mean square
between treatments $\mathrm{S}_{\mathrm{B}}=\sum_{\mathrm{t}} \mathrm{n}_{\mathrm{t}}\left(\overline{\mathrm{Y}}_{\mathrm{t} .}-\overline{\mathrm{Y}}_{. .}\right)^{2} \quad \mathrm{k}-1 \quad \mathrm{M}_{\mathrm{B}}=\mathrm{S}_{\mathrm{B}} /(\mathrm{k}-1)$
within treatments
$\mathrm{S}_{\mathrm{W}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}_{\mathrm{t}} .\right)^{2} \quad \mathrm{~N}-\mathrm{k} \quad \mathrm{M}_{\mathrm{W}}=\mathrm{S}_{\mathrm{W}} /(\mathrm{N}-\mathrm{k})$
total
$\mathrm{S}_{\mathrm{T}}=\sum_{\mathrm{t}} \sum_{\mathrm{i}}\left(\mathrm{Y}_{\mathrm{ti}}-\overline{\mathrm{Y}}_{. .}\right)^{2} \quad(\mathrm{~N}-1)$

ANOVA for two groups

The ANOVA test statistic is $\quad \mathrm{M}_{\mathrm{B}} / \mathrm{M}_{\mathrm{w}}$, with

$$
M_{B}=n_{1}\left(\bar{Y}_{1}-\bar{Y}_{. .}\right)^{2}+n_{2}\left(\bar{Y}_{2}-\bar{Y}_{. . .}\right)^{2}
$$

and

$$
\mathrm{M}_{\mathrm{W}}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}_{1}}\left(\mathrm{Y}_{1 \mathrm{i}}-\bar{Y}_{1}\right)^{2}+\sum_{\mathrm{i}=1}^{\mathrm{n}_{2}}\left(\mathrm{Y}_{2 \mathrm{i}}-\bar{Y}_{2}\right)^{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}-2}
$$

Two-sample t-test

The test statistic for the two sample t-test is

$$
\mathrm{t}=\frac{\bar{Y}_{1}-\bar{Y}_{2}}{\mathrm{~s} \sqrt{1 / \mathrm{n}_{1}+1 / \mathrm{n}_{2}}}
$$

with

$$
s^{2}=\frac{\sum_{i=1}^{n_{1}}\left(Y_{1 i}-\bar{Y}_{1}\right)^{2}+\sum_{i=1}^{n_{2}}\left(Y_{2 i}-\bar{Y}_{2}\right)^{2}}{n_{1}+n_{2}-2}
$$

This also assumes equal variance within the groups!

Result

$$
\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{W}}}=\mathrm{t}^{2}
$$

Reference distributions

If there was no difference in means, then

$$
\begin{aligned}
\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{M}_{\mathrm{W}}} & \sim \mathrm{~F}_{1, \mathrm{n}_{1}+\mathrm{n}_{2}-2} \\
\mathrm{t} & \sim \mathrm{t}_{\mathrm{n}_{1}+\mathrm{n}_{2}-2}
\end{aligned}
$$

Now does this mean $\quad F_{1, n_{1}+n_{2}-2}=\left(t_{n_{1}+n_{2}-2}\right)^{2} \quad$?

A few facts

$$
\begin{gathered}
\mathrm{F}_{1, \mathrm{k}}=\mathrm{t}_{\mathrm{k}}^{2} \\
\mathrm{~F}_{\mathrm{k}, \infty}=\frac{\chi_{\mathrm{k}}^{2}}{\mathrm{k}} \\
\mathrm{~N}(0,1)^{2}=\chi_{1}^{2}=\mathrm{F}_{1, \infty}=\mathrm{t}_{\infty}^{2}
\end{gathered}
$$

Random effects

The random effects model

Two different ways to describe the model:
A. $\quad \mu_{\mathrm{t}} \sim$ iid $\mathrm{N}\left(\mu, \sigma_{\mathrm{A}}^{2}\right)$

$$
\mathrm{Y}_{\mathrm{ti}}=\mu_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \text { where } \epsilon_{\mathrm{ti}} \sim \text { iid } \mathrm{N}\left(0, \sigma^{2}\right)
$$

B. $\quad \tau_{\mathrm{t}} \sim$ iid $\mathrm{N}\left(0, \sigma_{\mathrm{A}}^{2}\right)$

$$
\mathrm{Y}_{\mathrm{ti}}=\mu+\tau_{\mathrm{t}}+\epsilon_{\mathrm{ti}} \text { where } \epsilon_{\mathrm{ti}} \sim \text { iid } \mathrm{N}\left(0, \sigma^{2}\right)
$$

$\longrightarrow \quad$ We add another layer of sampling.

Hypothesis testing

\rightarrow In the standard ANOVA model, we considered the μ_{t} as fixed but unknown quantities.

We test the hypothesis $H_{0}: \mu_{1}=\cdots=\mu_{\mathrm{k}}$ (versus H_{0} is false) using the statistic $\mathrm{M}_{\mathrm{B}} / \mathrm{M}_{\mathrm{W}}$ from the ANOVA table and the comparing this to an $\mathrm{F}(\mathrm{k}-1, \mathrm{~N}-\mathrm{k})$ distribution.
\rightarrow In the random effects model, we consider the μ_{t} as random draws from a normal distribution with mean μ and variance σ_{A}^{2}. We seek to test the hypothesis $\mathrm{H}_{0}: \sigma_{\mathrm{A}}^{2}=0$ versus $\mathrm{H}_{\mathrm{a}}: \sigma_{\mathrm{A}}^{2}>0$.

As it turns out, we end up with the same test statistic and same null distribution. For one-way ANOVA, that is!

Estimation

For the random effects model it can be shown that

$$
\mathrm{E}\left(\mathrm{M}_{\mathrm{B}}\right)=\sigma^{2}+\mathrm{n}_{0} \times \sigma_{\mathrm{A}}^{2}
$$

where

$$
n_{0}=\frac{1}{k-1}\left(N-\frac{\sum_{t} n_{t}^{2}}{\sum_{t} n_{t}}\right)
$$

Recall also that $\mathrm{E}\left(\mathrm{M}_{\mathrm{W}}\right)=\sigma^{2}$.

Thus, we may estimate σ^{2} by $\hat{\sigma}^{2}=\mathrm{M}_{\mathrm{w}}$.
And we may estimate σ_{A}^{2} by $\hat{\sigma}_{\mathrm{A}}^{2}=\left(\mathrm{M}_{\mathrm{B}}-\mathrm{M}_{\mathrm{W}}\right) / \mathrm{n}_{0}$ (provided that this is ≥ 0).

The first example

The samples sizes for the 8 families were ($14,12,11,10,10,11$, 15,9), for a total sample size of 92 .

Thus, $\mathrm{n}_{0} \approx 11.45$.

For the female meioses, $M_{B}=212$ and $M_{W}=46$. Thus

$$
\begin{aligned}
& \hat{\sigma}=\sqrt{46}=6.8 \\
& \hat{\sigma}_{\mathrm{A}}=\sqrt{(212-46) / 11.45}=3.81 .
\end{aligned}
$$

For the male meioses, $M_{B}=16.3$ and $M_{W}=13.2$. Thus

$$
\begin{array}{ll}
\hat{\sigma}=\sqrt{13.2}=3.6 & \rightarrow \text { overall sample mean }=22.8 \\
\hat{\sigma}_{\mathrm{A}}=\sqrt{(16.3-13.2) / 11.45}=0.52
\end{array}
$$

