Confidence Intervals for Proportions

Example

[Carroll, J Med Entomol 38:114-117, 2001]
Place tick on clay island surrounded by water, with two capillary tubes: one treated with deer-gland-substance; one untreated.

Tick sex	Leg	Deer sex	treated	untreated
male	fore	female	24	5
female	fore	female	18	5
male	fore	male	23	4
female	fore	male	20	4
male	hind	female	17	8
female	hind	female	25	3
male	hind	male	21	6
female	hind	male	25	2

\longrightarrow Is the tick more likely to go to the treated tube?

Test for a proportion

Suppose $X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$.
Test $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}$ vs $\mathrm{H}_{\mathrm{a}}: \mathrm{p} \neq \frac{1}{2}$.
Reject H_{0} if $\mathrm{X} \geq \mathrm{H}$ or $\mathrm{X} \leq \mathrm{L}$.
Choose H and L such that

$$
\operatorname{Pr}\left(\mathbf{X} \geq \mathrm{H} \left\lvert\, \mathrm{P}=\frac{1}{2}\right.\right) \leq \alpha / 2 \text { and } \operatorname{Pr}\left(\mathbf{X} \leq \mathrm{L} \left\lvert\, \mathrm{P}=\frac{1}{2}\right.\right) \leq \alpha / 2 .
$$

Thus $\operatorname{Pr}\left(\right.$ Reject $\mathrm{H}_{0} \mid \mathrm{H}_{0}$ is true $) \leq \alpha$.
\longrightarrow The difficulty: The Binomial distribution is hard to work with. Because of its discrete nature, you can't get exactly your desired significance level (α).

Binomial(n=29, $\mathrm{p}=1 / 2$)

Rejection region

Consider $\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}=29, \mathrm{p})$.
Test of $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}$ vs $\mathrm{H}_{\mathrm{a}}: \mathrm{p} \neq \frac{1}{2}$ at significance level $\alpha=0.05$.
Lower critical value:

$$
\begin{aligned}
& \text { qbinom }(0.025,29,0.5)=9 \\
& \operatorname{Pr}(X \leq 9)=\operatorname{pbinom}(9,29,0.5)=0.031 \rightarrow L=8
\end{aligned}
$$

Upper critical value:

$$
\begin{aligned}
& \text { qbinom }(0.975,29,0.5)=20 \\
& \operatorname{Pr}(X \geq 20)=1 \text {-p.binom }(19,29,0.5)=0.031 \rightarrow H=21
\end{aligned}
$$

Reject H_{0} if $\mathrm{X} \leq 8$ or $\mathrm{X} \geq 21$. (For testing $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}, \mathrm{H}=\mathrm{n}-\mathrm{L}$)

Significance level

Consider X ~ Binomial ($\mathrm{n}=29, \mathrm{p}$).
Test of $H_{0}: p=\frac{1}{2}$ vs $H_{a}: p \neq \frac{1}{2}$ at significance level $\alpha=0.05$.
Reject H_{0} if $\mathrm{X} \leq 8$ or $\mathrm{X} \geq 21$.
Actual significance level:

$$
\begin{aligned}
\alpha & =\operatorname{Pr}\left(\mathrm{X} \leq 8 \text { or } \mathrm{X} \geq 21 \left\lvert\, \mathrm{p}=\frac{1}{2}\right.\right) \\
& =\operatorname{Pr}\left(\mathrm{X} \leq 8 \left\lvert\, \mathrm{p}=\frac{1}{2}\right.\right)+\left[1-\operatorname{Pr}\left(\mathrm{X} \leq 20 \left\lvert\, \mathrm{p}=\frac{1}{2}\right.\right)\right] \\
& =\text { p.binom }(8,29,0.5)+1 \text {-pbinom }(20,29,0.5) \\
& =0.024
\end{aligned}
$$

If we used instead "Reject H_{0} if $X \leq 9$ or $X \geq 20$ ", the significance level would be
p.binom(9,29,0.5) + 1-p.binom(19,29,0.5) $=0.061$

Example 1

Observe $X=24$ (for $n=29)$.
Reject $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}$ if $\mathrm{X} \leq 8$ or $\mathrm{X} \geq 21$.
Thus we reject H_{0} and conclude that the ticks were more likely to go to the deer-gland-substance-treated tube.

$$
\begin{aligned}
\text { P-value } & =2 \times \operatorname{Pr}\left(X \geq 24 \left\lvert\, p=\frac{1}{2}\right.\right) \\
& =2 \star(1-\text { p.binom }(23,29,0.5)) \\
& =0.0005 .
\end{aligned}
$$

\longrightarrow Alternatively: binom.test $(24,29)$

Example 2

Observe $X=17$ (for $n=25$); assume $X \sim \operatorname{Binomial}(n=25, p)$.
Test of $\mathrm{H}_{0}: \mathrm{p}=\frac{1}{2}$ vs $\mathrm{H}_{\mathrm{a}}: \mathrm{p} \neq \frac{1}{2}$ at significance level $\alpha=0.05$.
Rejection rule: Reject H_{0} if $\mathrm{X} \leq 7$ or $\mathrm{X} \geq 18$.
qbinom(0.025, 25, 0.5) $=8$
pbinom(8, 25, 0.5) $=0.054$
pbinom(7, 25, 0.5) = 0.022
Significance level:
pbinom(7,25,0.5) + 1-pbinom(17,25,0.5) $=0.043$
Since we observed $X=17$, we fail to reject H_{0}.

$$
P \text {-value }=2 \star(1-\text { p.binom }(16,25,0.5))=0.11
$$

Confidence interval for a proportion

Suppose $X \sim \operatorname{Binomial}(\mathrm{n}=29, \mathrm{p})$ and we observe $\mathrm{X}=24$.
Consider the test of $H_{0}: p=p_{0}$ vs $H_{a}: p \neq p_{0}$.
We reject H_{0} if

$$
\operatorname{Pr}\left(\mathrm{X} \leq 24 \mid \mathrm{p}=\mathrm{p}_{0}\right) \leq \alpha / 2 \quad \text { or } \quad \operatorname{Pr}\left(\mathrm{X} \geq 24 \mid \mathrm{p}=\mathrm{p}_{0}\right) \leq \alpha / 2
$$

95\% confidence interval for p:
\longrightarrow The set of p_{0} for which a two-tailed test of $H_{0}: p=p_{0}$ would not be rejected, for the observed data, with $\alpha=0.05$.
\longrightarrow The "plausible" values of p.

Example 1

Binomial $(\mathrm{n}=29, \mathrm{p}=0.64)$

Binomial $(\mathrm{n}=29, \mathrm{p}=0.94)$

Example 1

$X \sim \operatorname{Binomial}(n=29, p) ;$ observe $X=24$.
Lower bound of 95\% confidence interval:
Largest p_{0} such that $\operatorname{Pr}\left(X \geq 24 \mid p=p_{0}\right) \leq 0.025$
Upper bound of 95\% confidence interval:
Smallest p_{0} such that $\operatorname{Pr}\left(X \leq 24 \mid p=p_{0}\right) \leq 0.025$
\longrightarrow binom.test $(24,29)$

95\% CI for p: (0.642, 0.942)
Note: $\hat{p}=24 / 29=0.83$ is not the midpoint of the Cl .

Example 2

$X \sim \operatorname{Binomial}(n=25, p) ;$ observe $X=17$.
Lower bound of 95\% confidence interval:
p_{L} such that 17 is the 97.5 percentile of $\operatorname{Binomial}\left(\mathrm{n}=25, \mathrm{p}_{\mathrm{L}}\right)$
Upper bound of 95\% confidence interval:
p_{H} such that 17 is the 2.5 percentile of $\operatorname{Binomial}\left(\mathrm{n}=25, \mathrm{p}_{\mathrm{H}}\right)$
\longrightarrow binom.test (17,25)

95\% CI for p: $(0.465,0.851)$
Again, $\hat{p}=17 / 25=0.68$ is not the midpoint of the Cl

Example 2

Binomial($\mathrm{n}=25, \mathrm{p}=0.46$)

Binomial $(\mathrm{n}=25, \mathrm{p}=0.85)$

The case $X=0$

Suppose $\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$ and we observe $\mathrm{X}=0$.
Lower limit of 95% confidence interval for $\mathrm{p}: \rightarrow 0$
Upper limit of 95% confidence interval for p :
p_{H} such that

$$
\begin{aligned}
& \operatorname{Pr}\left(X \leq 0 \mid p=p_{H}\right)=0.025 \\
\Longrightarrow & \operatorname{Pr}\left(X=0 \mid p=p_{H}\right)=0.025 \\
\Longrightarrow & \left(1-p_{H}\right)^{n}=0.025 \\
\Longrightarrow & 1-p_{H}=\sqrt[n]{0.025} \\
\Longrightarrow & p_{H}=1-\sqrt[n]{0.025}
\end{aligned}
$$

In the case $\mathrm{n}=10$ and $\mathrm{X}=0$, the $95 \% \mathrm{CI}$ for p is $(0,0.31)$.

A mad cow example

New York Times, Feb 3, 2004:
The department [of Agriculture] has not changed last year's plans to test 40,000 cows nationwide this year, out of 30 million slaughtered. Janet Riley, a spokeswoman for the American Meat Institute, which represents slaughterhouses, called that "plenty sufficient from a statistical standpoint."

Suppose that the 40,000 cows tested are chosen at random from the population of 30 million cows, and suppose that 0 (or 1, or 2) are found to be infected.
\longrightarrow How many of the 30 million total cows would we estimate to be infected?
\longrightarrow What is the 95% confidence interval for the total number of infected cows?

The case $\mathrm{X}=\mathrm{n}$

Suppose $\mathrm{X} \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$ and we observe $\mathrm{X}=\mathrm{n}$.
Upper limit of 95% confidence interval for $\mathrm{p}: \rightarrow 1$
Lower limit of 95% confidence interval for p :
pısuch that

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathrm{X} \geq \mathrm{n} \mid \mathrm{p}=\mathrm{p}_{\mathrm{L}}\right)=0.025 \\
\Longrightarrow & \operatorname{Pr}\left(\mathrm{X}=\mathrm{n} \mid \mathrm{p}=\mathrm{p}_{\mathrm{L}}\right)=0.025 \\
\Longrightarrow & \left(\mathrm{p}_{\mathrm{L}}\right)^{\mathrm{n}}=0.025 \\
\Longrightarrow & \mathrm{p}_{\mathrm{L}}=\sqrt[n]{0.025}
\end{aligned}
$$

In the case $\mathrm{n}=25$ and $\mathrm{X}=25$, the $95 \% \mathrm{Cl}$ for p is $(0.86,1.00)$.

Large \mathbf{n} and medium \mathbf{p}

Suppose $X \sim \operatorname{Binomial}(n, p)$.

$$
\begin{array}{lll}
& E(X)=n p & S D(X)=\sqrt{n p(1-p)} \\
\hat{p}=X / n & E(\hat{p})=p & S D(\hat{p})=\sqrt{\frac{p(1-p)}{n}}
\end{array}
$$

For large n and medium $\mathrm{p}, \longrightarrow \hat{\mathrm{p}} \sim \operatorname{Normal}\left(\mathrm{p}, \sqrt{\frac{\mathrm{p}(1-\mathrm{p})}{\mathrm{n}}}\right)$
Use 95% confidence interval $\hat{p} \pm 1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
\longrightarrow Unfortunately, this can behave poorly.
\longrightarrow Fortunately, you can just use binom. test ()

