Contingency Tables

2×2 tables

Apply a treatment to 20 mice from strains A and B, and observe survival.

Question:
\longrightarrow Are the survival rates in the two strains the same?

Gather 100 rats and determine whether they are infected with viruses A and B.

$$
\begin{array}{r|cc|c}
& \mathrm{I}-\mathrm{B} & \mathrm{NI}-\mathrm{B} & \\
\cline { 2 - 3 } \text { I-A } & 9 & 9 & \\
\text { NI-A } & \begin{array}{c}
18 \\
20
\end{array} & 62 & \\
\cline { 2 - 3 } & 22 \\
& 29 & 71 & 100
\end{array}
$$

Question:

\longrightarrow Is infection with virus A independent of infection with virus B?

Underlying probabilities

\longrightarrow Observed data
B

A	0	1	
	0	n_{00}	n_{01}
1	n_{10}	n_{11}	n_{0+}
		n_{+0}	n_{+1}

\longrightarrow Underlying probabilities

$$
\begin{aligned}
& \text { B } \\
& 01 \\
& \begin{array}{ll|ll|l}
A & 0 & p_{00} & p_{01} & p_{0+} \\
& 1 & p_{10} & p_{11} & p_{1+} \\
& & p_{+0} & p_{+1} & 1
\end{array}
\end{aligned}
$$

Model:
$\left(n_{00}, n_{01}, n_{10}, n_{11}\right) \sim \operatorname{Multinomial}\left(n,\left\{p_{00}, p_{01}, p_{10}, p_{11}\right\}\right)$
or
$\mathrm{n}_{01} \sim \operatorname{Binomial}\left(\mathrm{n}_{0+}, \mathrm{p}_{01} / \mathrm{p}_{0+}\right)$ and $\mathrm{n}_{11} \sim \operatorname{Binomial}\left(\mathrm{n}_{1+}, \mathrm{p}_{11} / \mathrm{p}_{1+}\right)$

Conditional probabilities

Underlying probabilities

Conditional probabilities
$\operatorname{Pr}(B=1 \mid A=0)=p_{01} / p_{0+}$
$\operatorname{Pr}(B=1 \mid A=1)=p_{11} / p_{1+}$
$\operatorname{Pr}(\mathrm{A}=1 \mid \mathrm{B}=0)=\mathrm{p}_{10} / \mathrm{p}_{+0}$
$\operatorname{Pr}(A=1 \mid B=1)=p_{11} / p_{+1}$
\longrightarrow The questions in the two examples are the same!
They both concern: $\quad p_{01} / p_{0+}=p_{11} / p_{1+}$
Equivalently: $\quad p_{i j}=p_{i+} \times p_{+j}$ for all $i, j \rightarrow \operatorname{think} \operatorname{Pr}(A$ and $B)=\operatorname{Pr}(A) \times P r(B)$.

This is a composite hypothesis!

2×2 table

B	
	0
A 0	$\mathrm{p}_{00} \mathrm{p}_{01}$
1	$p_{10} p_{11}$
	$\mathrm{p}_{+0} \mathrm{P}_{+1}$

$H_{0}: \quad p_{i j}=p_{i+} \times p_{+j}$ for all $i, j \quad H_{0}: \quad p_{i j}=p_{i+} \times p_{+j}$ for all i, j

Degrees of freedom $=4-2-1=1$

Expected counts

Observed data
B

	0				1	
	0	n_{00}	n_{01}			
	n_{0+}					
	1	n_{10}	n_{11}			

Expected counts
B

	0				1	
	0	e_{00}	e_{01}			
	n_{0+}					
	1	e_{10}	e_{11}			
	n_{1+}					
		n_{+0}	n_{+1}			
			n			

To get the expected counts under the null hypothesis we:
\longrightarrow Estimate p_{1+} and p_{+1} by n_{1+} / n and n_{+1} / n, respectively. These are the MLEs under H_{0} !
\longrightarrow Turn these into estimates of the p_{ij}.
\longrightarrow Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H_{0}) for the " 11 " cell is the following:

$$
\begin{aligned}
\mathrm{e}_{11} & =\mathrm{n} \times \hat{\mathrm{p}}_{11} \\
& =\mathrm{n} \times \hat{\mathrm{p}}_{1+} \times \hat{\mathrm{p}}_{+1} \\
& =\mathrm{n} \times\left(\mathrm{n}_{1+} / \mathrm{n}\right) \times\left(\mathrm{n}_{+1} / \mathrm{n}\right) \\
& =\left(\mathrm{n}_{1+} \times \mathrm{n}_{+1}\right) / \mathrm{n}
\end{aligned}
$$

The other cells are similar.
\longrightarrow We can then calculate a χ^{2} or LRT statistic as before!

Example 1

Observed data

	N	Y
A		
B	18 11	2
	20	
29	11	20
20		

$X^{2}=\frac{(18-14.5)^{2}}{14.5}+\frac{(11-14.5)^{2}}{14.5}+\frac{(2-5.5)^{2}}{5.5}+\frac{(9-5.5)^{2}}{5.5}=6.14$
LRT $=2 \times\left[18 \log \left(\frac{18}{14.5}\right)+\ldots+9 \log \left(\frac{9}{5.5}\right)\right]=6.52$
P-values (based on the asymptotic $\chi^{2}(\mathrm{df}=1)$ approximation):
1.3% and 1.1%, respectively.

Expected counts

	N	Y	
A	14.5	5.5	20
B	14.5	5.5	20
	29	11	40

Example 2

	Observed data		
	I-B	NI-B	
I-A	9	9	18
NI-A	20	62	82
	29	71	100

Expected counts

	I-B	NI-B	
I-A	5.2	12.8	
NI-A	18		
	23.8	58.2	82
	29	71	100

$X^{2}=\frac{(9-5.2)^{2}}{5.2}+\frac{(20-23.8)^{2}}{23.8}+\frac{(9-12.8)^{2}}{12.8}+\frac{(62-58.2)^{2}}{58.2}=4.70$
LRT $=2 \times\left[9 \log \left(\frac{9}{5.2}\right)+\ldots+62 \log \left(\frac{62}{58.2}\right)\right]=4.37$
P-values (based on the asymptotic $\chi^{2}(\mathrm{df}=1)$ approximation):
3.0% and 3.7%, respectively.

Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- What's the chance of getting this exact table?
- What's the chance of getting a table at least as "extreme"?

Hypergeometric distribution

- Imagine an urn with K white balls and $\mathrm{N}-\mathrm{K}$ black balls.
- Draw n balls without replacement.
- Let x be the number of white balls in the sample.
- x follows a hypergeometric distribution (w/ parameters K, N, n).

	In urn white black	
sampled	x	n
not sampled		$\mathrm{N}-\mathrm{n}$

Hypergeometric probabilities

Suppose X ~ Hypergeometric (N, K, n).
No. of white balls in a sample of size n , drawn without replacement from an urn with K white and $\mathrm{N}-\mathrm{K}$ black.

$$
\operatorname{Pr}(\mathbf{X}=\mathbf{x})=\frac{\binom{\mathrm{K}}{\mathrm{x}}\binom{N-K}{n-x}}{\binom{N}{n}}
$$

Example:

In urn
01

sampled not	18	20
		20

$$
N=40, K=29, n=20
$$

$$
\operatorname{Pr}(X=18)=\frac{\binom{29}{18}\binom{40-29}{20-18}}{\binom{40}{20}} \approx 1.4 \%
$$

The hypergeometric in R

dhyper (x, m, n, k)
phyper (q, m, n, k)
qhyper ($\mathrm{p}, \mathrm{m}, \mathrm{n}, \mathrm{k}$)
rhyper (nn, m, n, k)

In R, things are set up so that
$\mathrm{m}=$ no. white balls in urn
$\mathrm{n}=$ no. black balls in urn
$\mathrm{k}=$ no. balls sampled (without replacement)
$x=$ no. white balls in sample
$\mathrm{nn}=$ no. of observations

Back to Fisher's exact test

Observed data

		N
A	Y	
A		
B	18	2
11	9	20
	29	11

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- Pr (observed table $\left.\mid \mathrm{H}_{0}\right)=\operatorname{Pr}(\mathrm{X}=18)$ $X \sim$ Hypergeometric ($N=40, K=29, n=20$)

Fisher's exact test

1. For all possible tables (with the observed marginal counts), calculate the relevant hypergeometric probability.
2. Use that probability as a statistic.
3. P-value (for Fisher's exact test of independence):
\longrightarrow The sum of the probabilities for all tables having a probability equal to or smaller than that observed.

An illustration

The observed data

20	0
9	11

$\rightarrow 0.00007$

19	1
10	10

18	2
11	9

17	3
12	8

16	4
13	7

15	5
14	6

14	6
15	5

13	7
16	4

12	8
17	3

11	9
18	2

9	11
20	0

Fisher's exact test: example 1

Observed data

	N	Y	20	P -value $\approx 3.1 \%$
A	18	2		
B	11	9	20	
	29	11	40	In R: fisher.test()

Recall:
$\longrightarrow \quad \chi^{2}$ test: P-value $=1.3 \%$
\longrightarrow LRT: P-value $=1.1 \%$

Fisher's exact test: example 2

Observed data

	I-B	
	NI-B	
I-A	9 9 20 62 NI-A 18 29 71	100

$$
P \text {-value } \approx 4.4 \%
$$

Recall:
$\longrightarrow \chi^{2}$ test: P-value $=3.0 \%$
\longrightarrow LRT: P-value $=3.7 \%$

Summary

Testing for independence in a 2×2 table:

- A special case of testing a composite hypothesis in a onedimensional table.
- You can use either the LRT or χ^{2} test, as before.
- You can also use Fisher's exact test.
- If Fisher's exact test is computationally feasible, do it!

Paired data

Gather 100 rats and deter-
mine whether they are infected with viruses A and B .

Underlying probabilities

	I-B	NI-B
I-A	9	9
NI-A	20	62
	29	71

\longrightarrow Is the rate of infection of virus A the same as that of virus B ? In other words: Is $p_{1+}=p_{+1}$? Equivalently, is $p_{10}=p_{01}$?

McNemar's test

$H_{0}: p_{01}=p_{10}$

Under H_{0}, e.g. if $\mathrm{p}_{01}=\mathrm{p}_{10}$, the expected counts for cells 01 and 10 are both equal to $\left(n_{01}+n_{10}\right) / 2$.

The χ^{2} test statistic reduces to $X^{2}=\frac{\left(n_{01}-n_{10}\right)^{2}}{n_{01}+n_{10}}$
For large sample sizes, this statistic has null distribution that is approximately a $\chi^{2}(\mathrm{df}=1)$.

For the example: $X^{2}=(20-9)^{2} / 29=4.17 \quad \longrightarrow \quad P=4.1 \%$.

An exact test

Condition on $\mathrm{n}_{01}+\mathrm{n}_{10}$.

Under $\mathrm{H}_{0}, \mathrm{n}_{01} \mid \mathrm{n}_{01}+\mathrm{n}_{10} \sim \operatorname{Binomial}\left(\mathrm{n}_{01}+\mathrm{n}_{10}, 1 / 2\right)$.

In R, use the function binom.test.
\longrightarrow For the example, $\mathrm{P}=6.1 \%$.

Paired data

	Paired data		
	I-B	NI-B	
I-A	9	9	18
NI-A	20	62	82
	29	71	100

Unpaired data

	I	NI	
A	18	82	100
B	29	71	100
	47	153	200

\longrightarrow Taking appropriate account of the "pairing" is important!

rxktables

Blood type

Population	A	B	$A B$	O	
	122	117	19	244	502
Florida	1781	1351	289	3301	6721
lowa	$13 y$				

\longrightarrow Same distribution of blood types in each population?

Underlying probabilities

Observed data

Underlying probabilities

$$
\mathrm{H}_{0}: \quad \mathrm{p}_{\mathrm{ij}}=\mathrm{p}_{\mathrm{i}+} \times \mathrm{p}_{+\mathrm{j}} \quad \text { for all } \mathrm{i}, \mathrm{j} .
$$

Expected counts

Observed data

	A	B	AB	0	
F	122	117	19	244	502
1	1781	1351	289	3301	6721
M	353	269	60	713	1395
	2256	1737	367	4258	8618

Expected counts

	A	B	AB	O	
F	131	101	21	248	502
I	1759	135	286	3321	6721
M	365	281	59	689	1395
	2256	1737	367	4258	8618

Expected counts under $\mathrm{H}_{0}: \quad \mathrm{e}_{\mathrm{ij}}=\mathrm{n}_{\mathrm{i}+} \times \mathrm{n}_{+\mathrm{j}} / \mathrm{n} \quad$ for all i, j.

χ^{2} and LRT statistics

Observed data

	A	B	AB	O	
F	122	117	19	244	502
I	1781	1351	289	3301	6721
M	353	269	60	713	1395
	2256	1737	367	4258	8618

Expected counts

	A	B	AB	0	
F	131	101	21	248	502
1	1759	1355	286	3321	6721
M	365	281	59	689	1395
	2256	1737	367	4258	8618

X^{2} statistic $=\sum \frac{(\text { obs }-\exp)^{2}}{\exp }=\cdots=5.64$
LRT statistic $=2 \times \sum$ obs $\ln ($ obs $/ \exp)=\cdots=5.55$

Asymptotic approximation

If the sample size is large, the null distribution of the χ^{2} and likelihood ratio test statistics will approximately follow a

$$
\chi^{2} \text { distribution with }(r-1) \times(k-1) \text { d.f. }
$$

In the example, $\mathrm{df}=(3-1) \times(4-1)=6$
$X^{2}=5.64 \longrightarrow \quad P=0.46$.
LRT $=5.55 \quad \longrightarrow \quad \mathrm{P}=0.48$.

Fisher's exact test

Observed data			
	$12 \ldots \mathrm{k}$		
1	$n_{11} n_{12} \cdots \cdots n_{1 k}$	n_{1+}	- Assume H_{0} is true.
2	$n_{21} n_{22} \cdots \cdots n_{2 k}$	n_{2+}	- Condition on the marginal counts
:	: $\quad \cdots \quad \cdots$:	- Then $\operatorname{Pr}($ table $) \propto 1 / \prod_{\mathrm{ij}} \mathrm{n}_{\mathrm{ij}}$!
r	$\mathrm{n}_{\mathrm{r} 1} \quad \mathrm{n}_{\mathrm{r} 2} \cdots \cdots \mathrm{n}_{\mathrm{rk}}$	$\mathrm{n}_{\text {+ }}$	

- Consider all possible tables with the observed marginal counts
- Calculate Pr(table) for each possible table.
- P-value = the sum of the probabilities for all tables having a probability equal to or smaller than that observed.

Fisher's exact test: the example

Observed

\longrightarrow Since the number of possible tables can be very large, we often must resort to computer simulation.

Another example

Survival following treatment in five mouse strains:

	Survive	
Strain	No	Yes
A	15	5
B	17	3
C	10	10
D	17	3
E	16	4

\longrightarrow Is the survival rate the same for all strains?

Results

Observed		
	Survive	
Strain	No	Yes
A	15	5
B	17	3
C	10	10
D	17	3
E	16	4

$X^{2}=9.07 \quad \longrightarrow \quad P=5.9 \% \quad$ (how many df?)
LRT $=8.41 \longrightarrow P=7.8 \%$
Fisher's exact test: $\mathrm{P}=8.7 \%$

All pairwise comparisons

Two-locus linkage in an intercross

	BB		
Ab	bb		
	6	15	3
Aa	9	29	6
aa	3	16	13

Are these two loci linked?

General test of independence

Observed data
BB Bb bb

AA	6	15	3
Aa	9	29	6
aa	3	16	13

χ^{2} test: $\quad X^{2}=10.4 \quad \longrightarrow \quad P=3.5 \% \quad(\mathrm{dff}=4)$
LRT test: \quad LRT $=9.98 \quad \longrightarrow \quad P=4.1 \%$
Fisher's exact test: $\quad P=4.6 \%$

A more specific test

Observed data

BB					Bb	bb
AA	6	15	3			
Aa	9	29	6			
aa	3	16	13			

Underlying probabilities

	BB	Bb	bb
AA	$\frac{1}{4}(1-\theta)^{2}$	$\frac{1}{2} \theta(1-\theta)$	$\frac{1}{4} \theta^{2}$
Aa	$\frac{1}{2} \theta(1-\theta)$	$\frac{1}{2}\left[\theta^{2}+(1-\theta)^{2}\right]$	$\frac{1}{2} \theta(1-\theta)$
aa	$\frac{1}{4} \theta^{2}$	$\frac{1}{2} \theta(1-\theta)$	$\frac{1}{4}(1-\theta)^{2}$

$H_{0}: \theta=1 / 2$ versus $\quad H_{a}: \theta<1 / 2$
Use a likelihood ratio test!
\longrightarrow Obtain the general MLE of θ.
\longrightarrow Calculate the LRT statistic $=2 \ln \left\{\frac{\operatorname{Prdata} \mid \hat{\theta})}{\operatorname{Pr}(\text { data } \mid \theta=1 / 2)}\right\}$
\longrightarrow Compare this statistic to a $\chi^{2}(\mathrm{df}=1)$.

Results

	BB	Bb	bb
	6	15	3
Aa	9	29	6
aa	3	16	13

MLE: $\hat{\theta}=0.359$
LRT statistic: $\quad L R T=7.74 \longrightarrow P=0.54 \% \quad(d f=1)$
\longrightarrow Here we assume Mendelian segregation, and that deviation from H_{0} is "in a particular direction."
\longrightarrow If these assumptions are correct, we'll have greater power to detect linkage using this more specific approach.

