Contingency Tables

2 x 2 tables

Apply a treatment to 20 mice from strains A and B, and observe survival.

Question:

Are the survival rates in the two strains the same?

Gather 100 rats and determine whether they are infected with viruses A and B.

Question:

Is infection with virus A independent of infection with virus B?

Underlying probabilities

→ Observed data

--- Underlying probabilities

В

Model:

$$(n_{00},n_{01},n_{10},n_{11}) \sim Multinomial(n,\{p_{00},p_{01},p_{10},p_{11}\})$$

or

$$n_{01} \sim Binomial(n_{0+}, p_{01}/p_{0+}) \ \ and \ \ \ n_{11} \sim Binomial(n_{1+}, p_{11}/p_{1+})$$

Conditional probabilities

Underlying probabilities

Conditional probabilities

$$Pr(B = 1 \mid A = 0) = p_{01}/p_{0+}$$

$$Pr(B = 1 \mid A = 1) = p_{11}/p_{1+}$$

$$Pr(A = 1 \mid B = 0) = p_{10}/p_{+0}$$

$$Pr(A = 1 \mid B = 1) = p_{11}/p_{+1}$$

→ The questions in the two examples are the same!

They both concern: $p_{01}/p_{0+} = p_{11}/p_{1+}$

 $\label{eq:problem} Equivalently: \qquad p_{ij} = p_{i+} \times p_{+j} \ \ \text{for all } i,j \quad \longrightarrow \text{ think Pr(A and B) = Pr(A)} \times \text{Pr(B)}.$

This is a composite hypothesis!

2 x 2 table

A different view

$$p_{00} p_{01} p_{10} p_{11}$$

$$H_0\colon \quad p_{ij}=p_{i+}\times p_{+j} \text{ for all } i,j \qquad \qquad H_0\colon \quad p_{ij}=p_{i+}\times p_{+j} \text{ for all } i,j$$

$$H_0$$
: $p_{ii} = p_{i+} \times p_{+i}$ for all i,j

Degrees of freedom = 4 - 2 - 1 = 1

Expected counts

Observed data

Expected counts

To get the expected counts under the null hypothesis we:

- \longrightarrow Estimate p_{1+} and p_{+1} by n_{1+}/n and n_{+1}/n , respectively. These are the MLEs under H₀!
- → Turn these into estimates of the p_{ii}.
- → Multiply these by the total sample size, n.

The expected counts

The expected count (assuming H_0) for the "11" cell is the following:

$$\begin{split} e_{11} &= n \times \hat{p}_{11} \\ &= n \times \hat{p}_{1+} \times \hat{p}_{+1} \\ &= n \times (n_{1+}/n) \times (n_{+1}/n) \\ &= (n_{1+} \times n_{+1})/n \end{split}$$

The other cells are similar.

 \longrightarrow We can then calculate a χ^2 or LRT statistic as before!

Example 1

Observed data

Expected counts

$$X^2 = \frac{(18-14.5)^2}{14.5} + \frac{(11-14.5)^2}{14.5} + \frac{(2-5.5)^2}{5.5} + \frac{(9-5.5)^2}{5.5} = 6.14$$

LRT =
$$2 \times [18 log(\frac{18}{14.5}) + ... + 9 log(\frac{9}{5.5})] = 6.52$$

P-values (based on the asymptotic $\chi^2(df = 1)$ approximation): 1.3% and 1.1%, respectively.

Example 2

Observed data

I-B NI-B I-A 9 9 18 NI-A 20 62 82 29 71 100

Expected counts

$$X^2 = \frac{(9-5.2)^2}{5.2} + \frac{(20-23.8)^2}{23.8} + \frac{(9-12.8)^2}{12.8} + \frac{(62-58.2)^2}{58.2} = 4.70$$

LRT =
$$2 \times [9 \log(\frac{9}{5.2}) + ... + 62 \log(\frac{62}{58.2})] = 4.37$$

P-values (based on the asymptotic $\chi^2(df = 1)$ approximation): 3.0% and 3.7%, respectively.

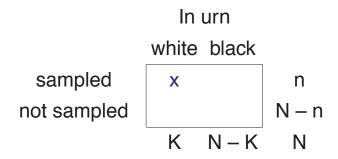
Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- What's the chance of getting this exact table?
- What's the chance of getting a table at least as "extreme"?

Hypergeometric distribution

- Imagine an urn with K white balls and N − K black balls.
- Draw n balls without replacement.
- Let x be the number of white balls in the sample.
- x follows a hypergeometric distribution (w/ parameters K, N, n).



Hypergeometric probabilities

Suppose $X \sim Hypergeometric (N, K, n)$.

No. of white balls in a sample of size n, drawn without replacement from an urn with K white and N-K black.

$$Pr(X = x) = \frac{\binom{K}{x} \binom{N-K}{n-x}}{\binom{N}{n}}$$

Example:

In urn
$$N = 40, \, K = 29, \, n = 20$$

$$\begin{array}{ccc} 0 & 1 \\ 18 & 20 \\ \text{not} & 20 \\ & 29 & 11 & 40 \end{array} \qquad \text{Pr}(X = 18) = \frac{\binom{29}{18}\binom{40-29}{20-18}}{\binom{40}{20}} \approx 1.4\%$$

The hypergeometric in R

In R, things are set up so that

m = no. white balls in urn

n = no. black balls in urn

k = no. balls sampled (without replacement)

x = no. white balls in sample

nn = no. of observations

Back to Fisher's exact test

Observed data

- Assume the null hypothesis (independence) is true.
- Constrain the marginal counts to be as observed.
- Pr(observed table | H₀) = Pr(X=18)
 X ~ Hypergeometric (N=40, K=29, n=20)

Fisher's exact test

- 1. For all possible tables (with the observed marginal counts), calculate the relevant hypergeometric probability.
- 2. Use that probability as a statistic.
- 3. P-value (for Fisher's exact test of independence):
 - The sum of the probabilities for all tables having a probability equal to or smaller than that observed.

An illustration

$\begin{bmatrix} 20 & 0 \\ 9 & 11 \end{bmatrix} \to 0.00007$	$ \begin{array}{ c c }\hline 14 & 6 \\ 15 & 5 \\ \hline \end{array} \rightarrow 0.25994$
$\begin{bmatrix} 19 & 1 \\ 10 & 10 \end{bmatrix} \to 0.00160$	$\begin{bmatrix} 13 & 7 \\ 16 & 4 \end{bmatrix} \rightarrow 0.16246$
$ \begin{array}{c c} 18 & 2 \\ 11 & 9 \end{array} \rightarrow 0.01380 $	$\begin{bmatrix} 12 & 8 \\ 17 & 3 \end{bmatrix} \rightarrow 0.06212$
$\begin{bmatrix} 17 & 3 \\ 12 & 8 \end{bmatrix} \rightarrow 0.06212$	$ \begin{bmatrix} 11 & 9 \\ 18 & 2 \end{bmatrix} \rightarrow 0.01380 $
$\begin{bmatrix} 16 & 4 \\ 13 & 7 \end{bmatrix} \rightarrow 0.16246$	$\begin{bmatrix} 10 & 10 \\ 19 & 1 \end{bmatrix} \to 0.00160$

 $\rightarrow 0.00007$

20 0

 $\rightarrow 0.25994$

14 6

Fisher's exact test: example 1

Observed data

P-value \approx 3.1%

In R: fisher.test()

Recall:

- $\rightarrow \chi^2$ test: P-value = 1.3%
- \rightarrow LRT: P-value = 1.1%

Fisher's exact test: example 2

Observed data

P-value $\approx 4.4\%$

Recall:

- $\rightarrow \chi^2$ test: P-value = 3.0%
- \rightarrow LRT: P-value = 3.7%

Summary

Testing for independence in a 2 x 2 table:

- A special case of testing a composite hypothesis in a onedimensional table.
- \bullet You can use either the LRT or χ^2 test, as before.
- You can also use Fisher's exact test.
- If Fisher's exact test is computationally feasible, do it!

Paired data

Gather 100 rats and determine whether they are infected with viruses A and B.

Underlying probabilities

→ Is the rate of infection of virus A the same as that of virus B?

In other words: Is $p_{1+} = p_{+1}$? Equivalently, is $p_{10} = p_{01}$?

McNemar's test

$$H_0$$
: $p_{01} = p_{10}$

Under H_0 , e.g. if $p_{01}=p_{10}$, the expected counts for cells 01 and 10 are both equal to $(n_{01}+n_{10})/2$.

The
$$\chi^2$$
 test statistic reduces to $X^2 = \frac{(n_{01} - n_{10})^2}{n_{01} + n_{10}}$

For large sample sizes, this statistic has null distribution that is approximately a $\chi^2(df = 1)$.

For the example: $X^2 = (20 - 9)^2 / 29 = 4.17 \longrightarrow P = 4.1\%$.

An exact test

Condition on $n_{01} + n_{10}$.

Under H_0 , $n_{01} \mid n_{01} + n_{10} \sim Binomial(n_{01} + n_{10}, 1/2)$.

In R, use the function binom.test.

 \longrightarrow For the example, P = 6.1%.

Paired data

Paired data

$$\rightarrow$$
 P = 6.1%

Unpaired data

$$\rightarrow$$
 P = 9.5%

→ Taking appropriate account of the "pairing" is important!

r x k tables

Blood type

Population	Α	В	AB	O	
Florida	122	117	19	244	502
Iowa	1781				
Missouri	353	269	60	713	1395
	2256	1737	367	4258	8618

→ Same distribution of blood types in each population?

Underlying probabilities

Observed data

Underlying probabilities

$$H_0 \colon \quad p_{ij} = p_{i+} \times p_{+j} \quad \text{ for all } i,j.$$

Expected counts

Observed data

Expected counts

Expected counts under H_0 : $e_{ij} = n_{i+} \times n_{+j}/n$ for all i,j.

χ^2 and LRT statistics

Observed data

A B AB O F 122 117 19 244 502 I 1781 1351 289 3301 6721 M 353 269 60 713 1395 2256 1737 367 4258 8618

Expected counts

$$X^2$$
 statistic = $\sum \frac{(obs-exp)^2}{exp} = \cdots = 5.64$

LRT statistic =
$$2 \times \sum obs ln(obs/exp) = \cdots = 5.55$$

Asymptotic approximation

If the sample size is large, the null distribution of the χ^2 and likelihood ratio test statistics will approximately follow a

$$\chi^2$$
 distribution with $(r-1) \times (k-1)$ d.f.

In the example, $df = (3 - 1) \times (4 - 1) = 6$

$$X^2 = 5.64 \longrightarrow P = 0.46.$$

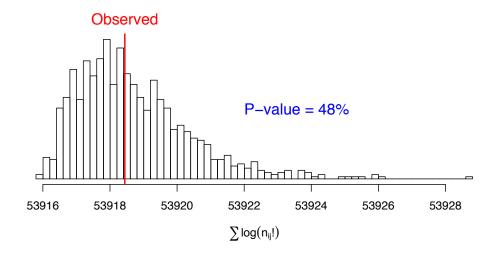
LRT =
$$5.55 \longrightarrow P = 0.48$$
.

Fisher's exact test

Observed data

- Assume H₀ is true.
- Condition on the marginal counts
- Then Pr(table) $\propto 1/\prod_{ij} n_{ij}!$
- Consider all possible tables with the observed marginal counts
- Calculate Pr(table) for each possible table.
- P-value = the sum of the probabilities for all tables having a probability equal to or smaller than that observed.

Fisher's exact test: the example



Since the number of possible tables can be very large, we often must resort to computer simulation.

Another example

Survival following treatment in five mouse strains:

	Survive		
Strain	No	Yes	
Α	15	5	
В	17	3	
С	10	10	
D	17	3	
E	16	4	

→ Is the survival rate the same for all strains?

Results

Observed

	Sur	Survive		
Strain	No	Yes		
A	15	5		
В	17	3		
С	10	10		
D	17	3		
E	16	4		

Expected under H₀

	Survive	
Strain	No	Yes
Α	15	5
В	15	5
С	15	5
D	15	5
Е	15	5

$$X^2 = 9.07 \qquad \longrightarrow \qquad P = 5.9\% \qquad \text{(how many df?)}$$

LRT =
$$8.41 \longrightarrow P = 7.8\%$$

Fisher's exact test: P = 8.7%

All pairwise comparisons

Two-locus linkage in an intercross

D 17 3

E 16 4

Is this a good thing to do?

Are these two loci linked?

General test of independence

Observed data

Expected counts

$$\chi^2$$
 test: $X^2 = 10.4 \longrightarrow P = 3.5\%$ (df = 4)

LRT test: LRT =
$$9.98 \rightarrow P = 4.1\%$$

Fisher's exact test: P = 4.6%

A more specific test

Observed data

Underlying probabilities

$$H_0$$
: $\theta = 1/2$ versus H_a : $\theta < 1/2$

Use a likelihood ratio test!

- \longrightarrow Obtain the general MLE of θ .
- $\longrightarrow \ \ \text{Calculate the LRT statistic} = 2 \ \text{In} \left\{ \frac{\Pr(\text{data} \mid \hat{\theta})}{\Pr(\text{data} \mid \theta = 1/2)} \right\}$
- \longrightarrow Compare this statistic to a $\chi^2(df = 1)$.

Results

MLE: $\hat{\theta} = 0.359$

LRT statistic: LRT = 7.74 \longrightarrow P = 0.54% (df = 1)

- \longrightarrow Here we assume Mendelian segregation, and that deviation from H_0 is "in a particular direction."
- If these assumptions are correct, we'll have greater power to detect linkage using this more specific approach.