Goodness of Fit

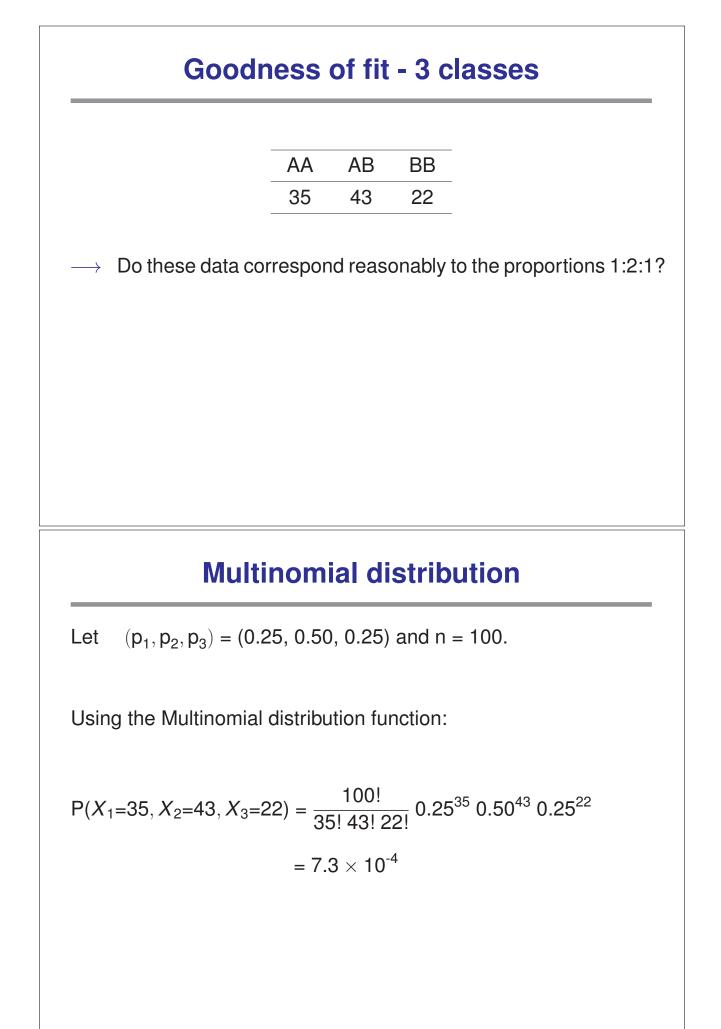
Goodness of fit - 2 classes

А	В
78	22

 \longrightarrow Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing $p_A = 0.75!$

- Exact p-value
- Exact confidence interval
- Normal approximation



Goodness of fit test

We observe $(n_1, n_2, n_3) \sim Multinomial(n, p=\{p_1, p_2, p_3\}).$

We seek to test $H_0: p_1 = 0.25, p_2 = 0.5, p_3 = 0.25.$ versus $H_a: H_0$ is false.

We need two things:

 \rightarrow A test statistic.

 \longrightarrow The null distribution of the test statistic.

The likelihood-ratio test (LRT)

Back to the first example:	-	А	В	-
back to the first example.	_	n _A	n _B	_

 $\text{Test} \quad H_0: (\textbf{p}_{A},\textbf{p}_{B}) = (\pi_{A},\pi_{B}) \quad \text{versus} \quad H_a: (\textbf{p}_{A},\textbf{p}_{B}) \neq (\pi_{A},\pi_{B}).$

 $\longrightarrow \ \text{MLE under } H_a \text{:} \quad \hat{p}_A = n_A/n \quad \text{where } n = n_A + n_B.$

Likelihood under H_a: $L_a = Pr(n_A | p_A = \hat{p}_A) = \binom{n}{n_A} \times \hat{p}_A^{n_A} \times (1 - \hat{p}_A)^{n - n_A}$ Likelihood under H₀: $L_0 = Pr(n_A | p_A = \pi_A) = \binom{n}{n_A} \times \pi_A^{n_A} \times (1 - \pi_A)^{n - n_A}$

 \longrightarrow Likelihood ratio test statistic: LRT = 2 \times ln (L_a/L₀)

→ Some clever people have shown that if H₀ is true, then LRT follows a χ^2 (df=1) distribution (approximately).

Likelihood-ratio test for the example

```
We observed n_A = 78 and n_B = 22.

H_0 : (p_A, p_B) = (0.75, 0.25)

H_a : (p_A, p_B) \neq (0.75, 0.25)

L_a = Pr(n_A = 78 | p_A = 0.78) = \binom{100}{78} \times 0.78^{78} \times 0.22^{22} = 0.096.

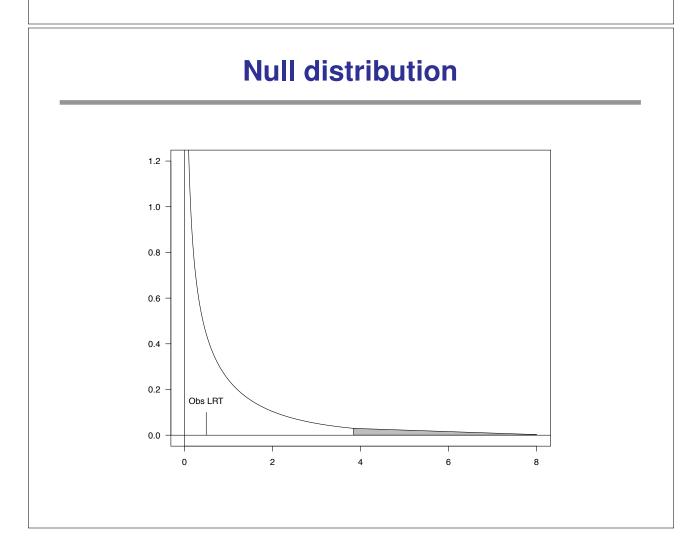
L_0 = Pr(n_A = 78 | p_A = 0.75) = \binom{100}{78} \times 0.75^{78} \times 0.25^{22} = 0.075.

\longrightarrow LRT = 2 \times ln (L_a/L_0) = 0.49.

Using a \chi^2(df=1) distribution, we get a p-value of 0.48.

We therefore have no evidence against the null hypothesis.

ln R: p-value = 1 - pchisq(0.49, 1)
```



A little math ...

$$\begin{split} n &= n_A + n_B, \quad n_A^0 = E[n_A \mid H_0] = n \times \pi_A, \quad n_B^0 = E[n_B \mid H_0] = n \times \pi_B. \\ \text{Then} \quad L_a/L_0 &= \left(\frac{n_A}{n_A^0}\right)^{n_A} \times \left(\frac{n_B}{n_B^0}\right)^{n_B} \\ \text{Or equivalently} \quad LRT = 2 \times n_A \times ln\left(\frac{n_A}{n_A^0}\right) + 2 \times n_B \times ln\left(\frac{n_B}{n_B^0}\right). \\ \longrightarrow \text{ Why do this?} \end{split}$$

Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

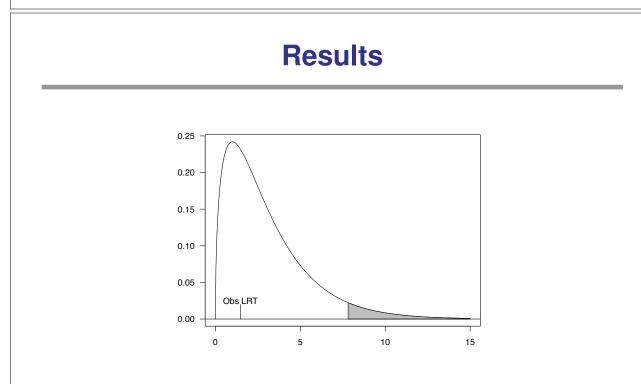
$$LRT=2\times \sum_{i=1}^{k}n_{i}\times$$
 In $\left(\frac{n_{i}}{n_{i}^{0}}\right)$

If H₀ is true, LRT
$$\sim \chi^2$$
(df=k-1)

Example

In a dihybrid cross of tomatos we expect the ratio of the phenotypes to be 9:3:3:1. In 1611 tomatos, we observe the numbers 926, 288, 293, 104. Do these numbers support our hypothesis?

Phenotype	n _i	n ⁰	$n_{\rm i}/n_{\rm i}^0$	$n_i imes ln(n_i/n_i^0)$
Tall, cut-leaf	926	906.2	1.02	20.03
Tall, potato-leaf	288	302.1	0.95	-13.73
Dwarf, cut-leaf	293	302.1	0.97	-8.93
Dwarf, potato-leaf	104	100.7	1.03	3.37
Sum	1611			0.74



The test statistics LRT is 1.48. Using a χ^2 (df=3) distribution, we get a p-value of 0.69. We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.

The chi-square test

There is an alternative technique. The test is called the chi-square test, and has the greater tradition in the literature. For two groups, calculate the following:

$$X^{2} = \frac{(n_{A} - n_{A}^{0})^{2}}{n_{A}^{0}} + \frac{(n_{B} - n_{B}^{0})^{2}}{n_{B}^{0}}$$

 \rightarrow If H₀ is true, then X^2 is a draw from a χ^2 (df=1) distribution (approximately).

Example

In the first example we observed $n_A = 78$ and $n_B = 22$. Under the null hypothesis we have $n_A^0 = 75$ and $n_B^0 = 25$. We therefore get

$$X^{2} = \frac{(78-75)^{2}}{75} + \frac{(22-25)^{2}}{25} = 0.12 + 0.36 = 0.48.$$

This corresponds to a p-value of 0.49. We therefore have no evidence against the hypothesis $(p_A, p_B) = (0.75, 0.25)$.

 \rightarrow Note: using the likelihood ratio test we got a p-value of 0.48.

In R: chisq.test(c(78,22),p=c(0.75,0.25))

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more than just two groups.

If we have k groups, the chi-square test statistic we use is

$$X^{2} = \sum_{i=1}^{k} \frac{(n_{i}-n_{i}^{0})^{2}}{n_{i}^{0}} \sim \chi^{2}$$
(df=k-1)

Tomato example

For the tomato example we get

$$X^{2} = \frac{(926-906.2)^{2}}{906.2} + \frac{(288-302.1)^{2}}{302.1} + \frac{(293-302.1)^{2}}{302.1} + \frac{(104-100.7)^{2}}{100.7}$$
$$= 0.43 + 0.65 + 0.27 + 0.11 = 1.47$$

Using a χ^2 (df=3) distribution, we get a p-value of 0.69. We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.

 \rightarrow Using the likelihood ratio test we also got a p-value of 0.69.

In R: chisq.test(c(926,288,293,104),p=c(9,3,3,1)/16)

Test statistics

Let n_i^0 denote the expected count in group i if H_0 is true.

LRT statistic
$$LRT = 2 \ ln \ \left\{ \frac{Pr(data \mid p = MLE)}{Pr(data \mid H_0)} \right\} = \ldots = 2 \ \sum_i n_i \ ln(n_i/n_i^0)$$

 χ^2 test statistic

$$X^{2} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}} = \sum_{i} \frac{(n_{i} - n_{i}^{0})^{2}}{n_{i}^{0}}$$

Null distribution of test statistic

What values of LRT (or X^2) should we expect, if H_0 were true?

The null distributions of these statistics may be obtained by:

- Brute-force analytic calculations
- Computer simulations
- Asymptotic approximations

$$\rightarrow$$
 If the sample size n is large, we have

LRT $\sim \chi^2(k-1)$ and $X^2 \sim \chi^2(k-1)$

The brute-force method

$$\label{eq:relation} \begin{split} \text{Pr}(\text{LRT} \geq g \mid H_0) & = \sum_{\substack{n_1, n_2, n_3 \\ \text{giving LRT} \geq g}} \text{Pr}(n_1, n_2, n_3 \mid H_0) \end{split}$$

This is not feasible.

Computer simulation

- 1. Simulate a table conforming to the null hypothesis. E.g., simulate $(n_1, n_2, n_3) \sim$ Multinomial $(n=100, \{1/4, 1/2, 1/4\})$
- 2. Calculate your test statistic.
- 3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value \rightarrow the 95th percentile of the results.

Estimated P-value \rightarrow the prop'n of results \geq the observed value.

In R, use rmultinom(n, size, prob) to do n simulations of a Multinomial(size, prob).

Example

We observe the following data:

AA	AB	BB
35	43	22

We imagine that these are counts

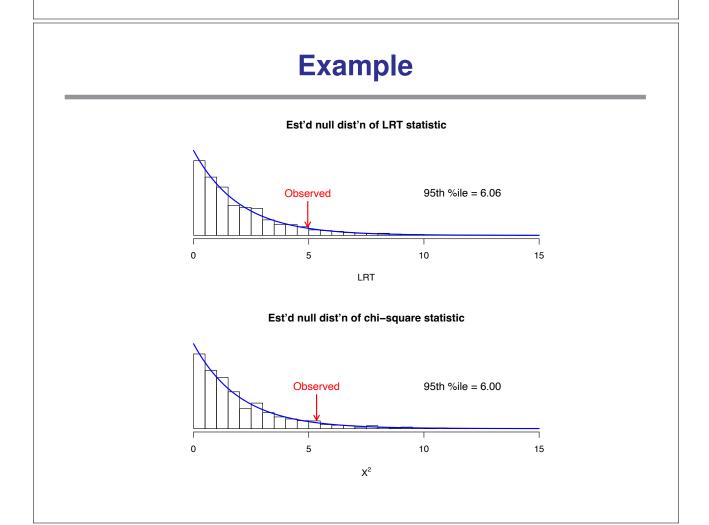
 $(n_1, n_2, n_3) \sim Multinomial(n=100, \{p_1, p_2, p_3\}).$

We seek to test $H_0: p_1 = 1/4, \ p_2 = 1/2, \ p_3 = 1/4.$

We calculate LRT = 4.96 and $X^2 = 5.34$.

Referring to the asymptotic approximations (χ^2 dist'n with 2 degrees of freedom), we obtain p = 8.4% and p = 6.9%.

With 10,000 simulations under H_0 , we get p = 8.9% and p = 7.4%.



Summary and recommendation

For either the LRT or the χ^2 test:

- \longrightarrow The null distribution is approximately $\chi^2({\bf k-1})$ if the sample size is large.
- The null distribution can be approximated by simulating data under the null hypothesis.

If the sample size is sufficiently large that the expected count in each cell is \geq 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not $\ \ p_{AA}=0.25, \ p_{AB}=0.5, \ p_{BB}=0.25$

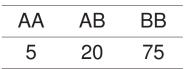
But rather something like:

$$p_{AA}=f^2,\ p_{AB}=2f(1-f),\ p_{BB}=(1-f)^2 \quad \ \text{for some f.}$$

For example: Consider the genotypes, of a random sample of individuals, at a diallelic locus.

 \rightarrow Is the locus in Hardy-Weinberg equilibrium (as expected in the case of random mating)?

Example data:



Another example

ABO blood groups \longrightarrow 3 alleles A, B, O. Phenotype A genotype AA or AO B genotype BB or BO genotype AB AB Ο genotype O Allele frequencies: f_A, f_B, f_O (Note that $f_A + f_B + f_O = 1$) Under Hardy-Weinberg equilibrium, we expect $p_A = f_A^2 + 2f_A f_O \quad p_B = f_B^2 + 2f_B f_O \quad p_{AB} = 2f_A f_B \quad p_O = f_O^2$ Ο Α B AB Example data: 104 91 36 19

LRT for example 1

Data: $(n_{AA}, n_{AB}, n_{BB}) \sim Multinomial(n, \{p_{AA}, p_{AB}, p_{BB}\})$

We seek to test whether the data conform reasonably to

$$H_0 \hbox{:} \ p_{AA} = f^2, \ p_{AB} = 2f(1-f), \ p_{BB} = (1-f)^2 \qquad \mbox{for some f.}$$

General MLEs:

 $\hat{p}_{AA}=n_{AA}/n,~\hat{p}_{AB}=n_{AB}/n,~\hat{p}_{BB}=n_{BB}/n$

$$\begin{split} &\text{MLE under } H_0\text{:} \\ &\hat{f} = (n_{AA} + n_{AB}/2)/n \ \longrightarrow \ \tilde{p}_{AA} = \hat{f}^2, \\ &\tilde{p}_{AB} = 2\,\hat{f}\,(1-\hat{f}), \\ &\tilde{p}_{BB} = (1-\hat{f})^2 \end{split}$$

 $\label{eq:LRT} \text{LRT statistic:} \quad \text{LRT} = 2 \times \ \text{In} \ \left\{ \frac{\text{Pr}(n_{AA}, n_{AB}, n_{BB} \mid \hat{p}_{AA}, \hat{p}_{AB}, \hat{p}_{BB})}{\text{Pr}(n_{AA}, n_{AB}, n_{BB} \mid \tilde{p}_{AA}, \tilde{p}_{AB}, \tilde{p}_{BB})} \right\}$

LRT for example 2

Data: $(n_O, n_A, n_B, n_{AB}) \sim Multinomial(n, \{p_O, p_A, p_B, p_{AB}\})$

We seek to test whether the data conform reasonably to H₀: $p_A = f_A^2 + 2f_A f_O$, $p_B = f_B^2 + 2f_B f_O$, $p_{AB} = 2f_A f_B$, $p_O = f_O^2$ for some f_O , f_A , f_B , where $f_O + f_A + f_B = 1$.

General MLEs: $\hat{p}_{O}, \hat{p}_{A}, \hat{p}_{B}, \hat{p}_{AB}$, like before.

MLE under H₀: Requires numerical optimization Call them $(\hat{f}_O, \hat{f}_A, \hat{f}_B) \longrightarrow (\tilde{p}_O, \tilde{p}_A, \tilde{p}_B, \tilde{p}_{AB})$

 $\label{eq:LRT} \text{LRT statistic:} \quad \text{LRT} = 2 \times \text{ In } \left\{ \frac{\text{Pr}(n_{O}, n_{A}, n_{B}, n_{AB} \mid \hat{p}_{O}, \hat{p}_{A}, \hat{p}_{B}, \hat{p}_{AB})}{\text{Pr}(n_{O}, n_{A}, n_{B}, n_{AB} \mid \tilde{p}_{O}, \tilde{p}_{A}, \tilde{p}_{B}, \tilde{p}_{AB})} \right\}$

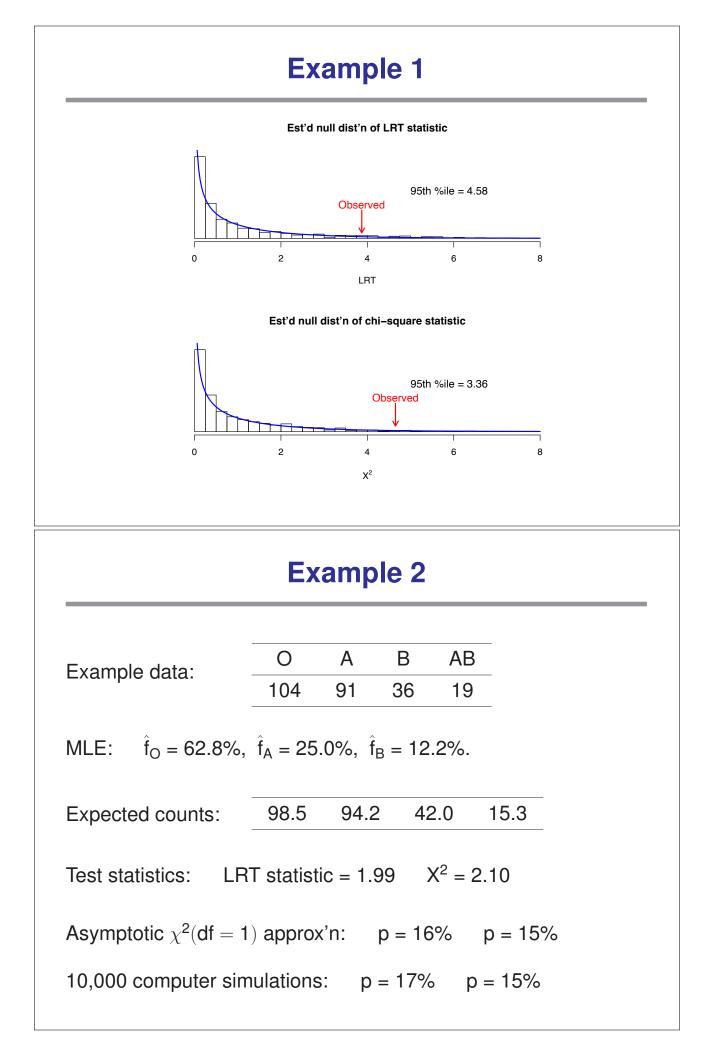
χ^2 test for these examples

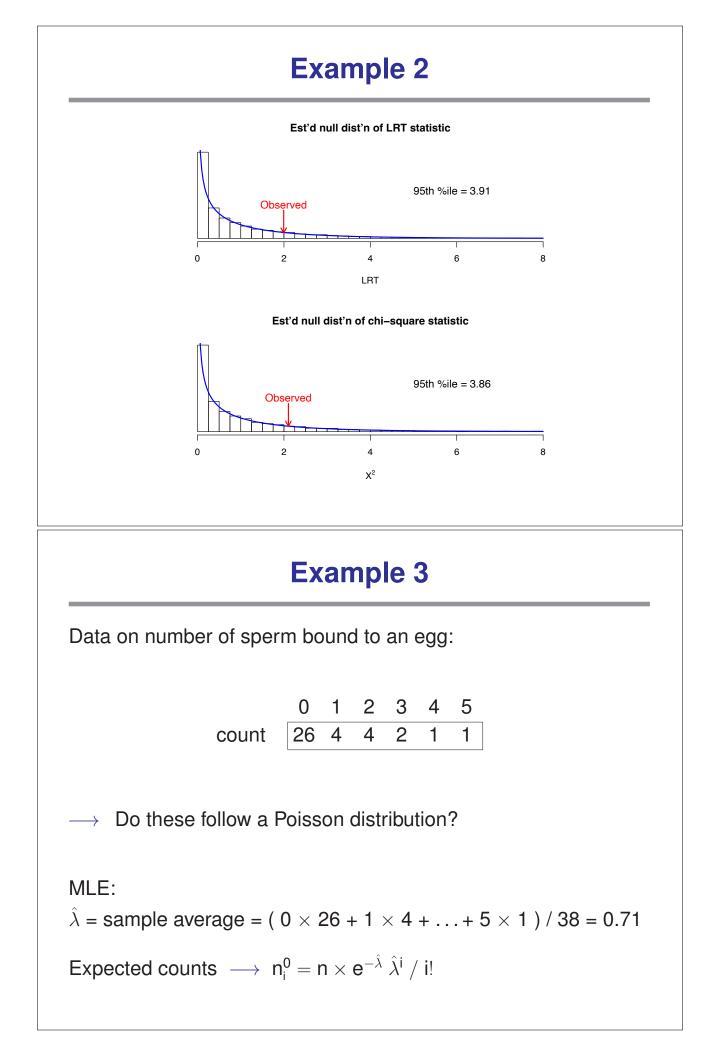
- Obtain the MLE(s) under H_0 .
- Calculate the corresponding cell probabilities.
- Turn these into (estimated) expected counts under H₀.
- Calculate $X^2 = \sum \frac{(observed expected)^2}{expected}$

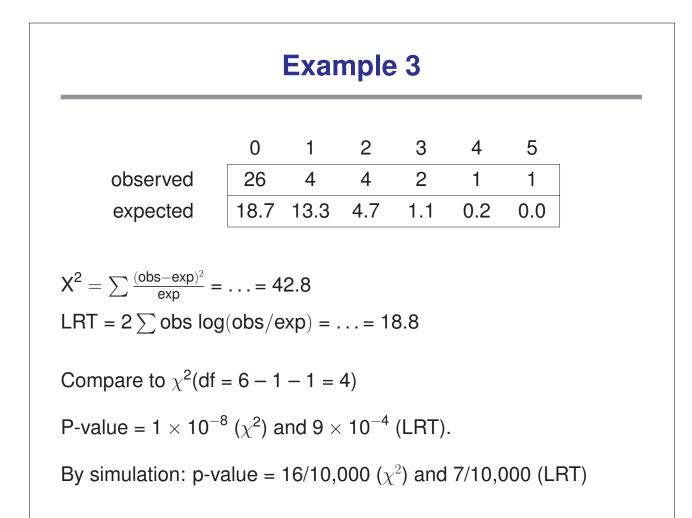
Null distribution for these cases

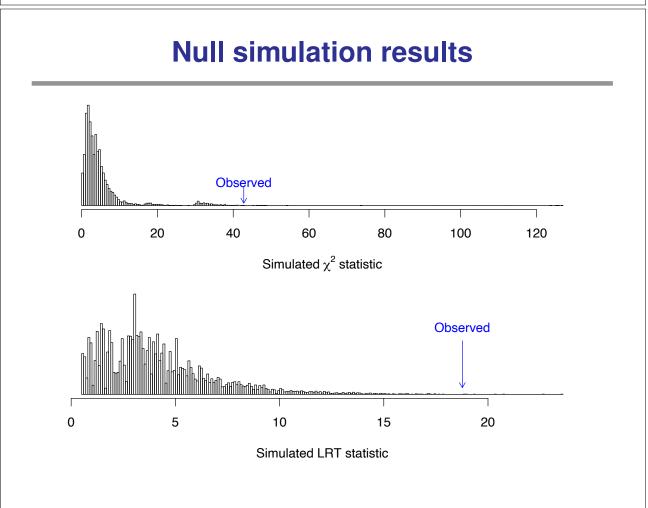
- Computer simulation (with one wrinkle)
 - \circ Simulate data under H_0 (plug in the MLEs for the observed data)
 - Calculate the MLE with the simulated data
 - \circ Calculate the test statistic with the simulated data
 - Repeat many times
- Asymptotic approximation
 - \circ Under H₀, if the sample size, n, is large, both the LRT statistic and the χ^2 statistic follow, approximately, a χ^2 distribution with k s 1 degrees of freedom, where s is the number of parameters estimated under H₀.
 - \circ Note that s = 1 for example 1, and s = 2 for example 2, and so df = 1 for both examples.

AA 5 100 =	AB 20 15%	BB 75		
		75		
100 =	15%			
.25	25.5	72.25		
tatistic	c = 3.87	7 X ² =	4.65	
oprox'	'n: p	= 4.9%	p = 3.	1%
tions:	: p =	8.2%	p = 2.4%	%
	tatisti oprox	tatistic = 3.87 oprox'n: p	oprox'n: p = 4.9%	<u>.25 25.5 72.25</u> tatistic = $3.87 X^2 = 4.65$ oprox'n: p = $4.9\% p = 3$. tions: p = $8.2\% p = 2.4\%$









A final note

With these sorts of goodness-of-fit tests, we are often happy when our model does fit.

In other words, we often prefer to fail to reject H_0 .

Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution.

We should think: how much power do I have to detect, with these limited data, a reasonable deviation from H_0 ?