Goodness of Fit

Goodness of fit - 2 classes

A	B
78	22

\longrightarrow Do these data correspond reasonably to the proportions 3:1?

We previously discussed options for testing $\mathrm{p}_{\mathrm{A}}=0.75$!

- Exact p-value
- Exact confidence interval
- Normal approximation

Goodness of fit - 3 classes

$A A$	$A B$	$B B$
35	43	22

\longrightarrow Do these data correspond reasonably to the proportions 1:2:1?

Multinomial distribution

Let $\quad\left(p_{1}, p_{2}, p_{3}\right)=(0.25,0.50,0.25)$ and $n=100$.

Using the Multinomial distribution function:

$$
\begin{aligned}
\mathrm{P}\left(X_{1}=35, X_{2}=43, X_{3}=22\right) & =\frac{100!}{35!43!22!} 0.25^{35} 0.50^{43} 0.25^{22} \\
& =7.3 \times 10^{-4}
\end{aligned}
$$

Goodness of fit test

We observe $\left(n_{1}, n_{2}, n_{3}\right) \sim \operatorname{Multinomial}\left(n, p=\left\{p_{1}, p_{2}, p_{3}\right\}\right)$.

We seek to test $H_{0}: p_{1}=0.25, p_{2}=0.5, p_{3}=0.25$.
versus $\mathrm{H}_{\mathrm{a}}: \mathrm{H}_{0}$ is false.

We need two things:
\longrightarrow A test statistic.
\longrightarrow The null distribution of the test statistic.

The likelihood-ratio test (LRT)

Back to the first example:

A	B
n_{A}	n_{B}

Test $\quad H_{0}:\left(p_{A}, p_{B}\right)=\left(\pi_{A}, \pi_{B}\right) \quad$ versus $\quad H_{a}:\left(p_{A}, p_{B}\right) \neq\left(\pi_{A}, \pi_{B}\right)$.
\longrightarrow MLE under $H_{a}: \quad \hat{p}_{A}=n_{A} / n \quad$ where $n=n_{A}+n_{B}$.
Likelihood under $H_{a}: \quad L_{a}=\operatorname{Pr}\left(n_{A} \mid p_{A}=\hat{p}_{A}\right)=\binom{n}{n_{A}} \times \hat{p}_{A}^{n_{A}} \times\left(1-\hat{p}_{A}\right)^{n-n_{A}}$
Likelihood under $\mathrm{H}_{0}: \quad \mathrm{L}_{0}=\operatorname{Pr}\left(n_{A} \mid \mathrm{p}_{\mathrm{A}}=\pi_{\mathrm{A}}\right)=\binom{n}{n_{A}} \times \pi_{\mathrm{A}}^{n_{A}} \times\left(1-\pi_{\mathrm{A}}\right)^{n-n_{A}}$
\longrightarrow Likelihood ratio test statistic: LRT $=2 \times \ln \left(L_{a} / L_{0}\right)$
\longrightarrow Some clever people have shown that if H_{0} is true, then LRT follows a $\chi^{2}(\mathrm{df}=1)$ distribution (approximately).

Likelihood-ratio test for the example

We observed $\mathrm{n}_{\mathrm{A}}=78$ and $\mathrm{n}_{\mathrm{B}}=22$.
$H_{0}:\left(p_{A}, p_{B}\right)=(0.75,0.25)$
$H_{a}:\left(p_{A}, p_{B}\right) \neq(0.75,0.25)$
$\mathrm{L}_{\mathrm{a}}=\operatorname{Pr}\left(\mathrm{n}_{\mathrm{A}}=78 \mid \mathrm{p}_{\mathrm{A}}=0.78\right)=\binom{100}{78} \times 0.78^{78} \times 0.22^{22}=0.096$.
$\mathrm{L}_{0}=\operatorname{Pr}\left(\mathrm{n}_{\mathrm{A}}=78 \mid \mathrm{p}_{\mathrm{A}}=0.75\right)=\binom{100}{78} \times 0.75^{78} \times 0.25^{22}=0.075$.
$\longrightarrow \mathrm{LRT}=2 \times \ln \left(\mathrm{L}_{\mathrm{a}} / \mathrm{L}_{0}\right)=0.49$.
Using a $\chi^{2}(\mathrm{df}=1)$ distribution, we get a p-value of 0.48 .
We therefore have no evidence against the null hypothesis.

In R: $\quad \mathrm{p}$-value $=1$ - pchisq $(0.49,1)$

Null distribution

A little math ...

$\mathrm{n}=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}, \quad \mathrm{n}_{\mathrm{A}}^{0}=\mathrm{E}\left[\mathrm{n}_{\mathrm{A}} \mid \mathrm{H}_{0}\right]=\mathrm{n} \times \pi_{\mathrm{A}}, \quad \mathrm{n}_{\mathrm{B}}^{0}=\mathrm{E}\left[\mathrm{n}_{\mathrm{B}} \mid \mathrm{H}_{0}\right]=\mathrm{n} \times \pi_{\mathrm{B}}$.

Then $\quad L_{a} / L_{0}=\left(\frac{n_{A}}{n_{A}^{0}}\right)^{n_{A}} \times\left(\frac{n_{B}}{n_{B}^{0}}\right)^{n_{B}}$

Or equivalently $\quad L R T=2 \times n_{A} \times \ln \left(\frac{n_{A}}{n_{A}^{\circ}}\right)+2 \times n_{B} \times \ln \left(\frac{n_{B}}{n_{B}^{\circ}}\right)$.
\longrightarrow Why do this?

Generalization to more than two groups

If we have k groups, then the likelihood ratio test statistic is

$$
\text { LRT }=2 \times \sum_{i=1}^{k} n_{i} \times \ln \left(\frac{n_{i}}{n_{i}^{0}}\right)
$$

If H_{0} is true, $\mathrm{LRT} \sim \chi^{2}(\mathrm{df}=\mathrm{k}-1)$

Example

In a dihybrid cross of tomatos we expect the ratio of the phenotypes to be 9:3:3:1. In 1611 tomatos, we observe the numbers $926,288,293,104$. Do these numbers support our hypothesis?

Phenotype	n_{i}	$\mathrm{n}_{\mathrm{i}}^{0}$	$\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}^{0}$	$\mathrm{n}_{\mathrm{i}} \times \ln \left(\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}^{0}\right)$
Tall, cut-leaf	926	906.2	1.02	20.03
Tall, potato-leaf	288	302.1	0.95	-13.73
Dwarf, cut-leaf	293	302.1	0.97	-8.93
Dwarf, potato-leaf	104	100.7	1.03	3.37
Sum	1611			0.74

Results

The test statistics LRT is 1.48. Using a $\chi^{2}(\mathrm{df}=3)$ distribution, we get a p-value of 0.69 . We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.

The chi-square test

There is an alternative technique. The test is called the chi-square test, and has the greater tradition in the literature. For two groups, calculate the following:

$$
X^{2}=\frac{\left(n_{A}-n_{A}^{0}\right)^{2}}{n_{A}^{0}}+\frac{\left(n_{B}-n_{B}^{0}\right)^{2}}{n_{B}^{0}}
$$

\longrightarrow If H_{0} is true, then X^{2} is a draw from a $\chi^{2}(\mathrm{df}=1)$ distribution (approximately).

Example

In the first example we observed $\mathrm{n}_{\mathrm{A}}=78$ and $\mathrm{n}_{\mathrm{B}}=22$. Under the null hypothesis we have $\mathrm{n}_{\mathrm{A}}^{0}=75$ and $\mathrm{n}_{\mathrm{B}}^{0}=25$. We therefore get

$$
X^{2}=\frac{(78-75)^{2}}{75}+\frac{(22-25)^{2}}{25}=0.12+0.36=0.48
$$

This corresponds to a p-value of 0.49 . We therefore have no evidence against the hypothesis $\left(\mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}\right)=(0.75,0.25)$.
\longrightarrow Note: using the likelihood ratio test we got a p-value of 0.48 .

Generalization to more than two groups

As with the likelihood ratio test, there is a generalization to more than just two groups.

If we have k groups, the chi-square test statistic we use is

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n_{i}^{0}\right)^{2}}{n_{i}^{0}} \sim \chi^{2}(d f=k-1)
$$

Tomato example

For the tomato example we get

$$
\begin{aligned}
X^{2} & =\frac{(926-906.2)^{2}}{906.2}+\frac{(288-302.1)^{2}}{302.1}+\frac{(293-302.1)^{2}}{302.1}+\frac{(104-100.7)^{2}}{100.7} \\
& =0.43+0.65+0.27+0.11=1.47
\end{aligned}
$$

Using a $\chi^{2}(\mathrm{df}=3)$ distribution, we get a p -value of 0.69 . We therefore have no evidence against the hypothesis that the ratio of the phenotypes is 9:3:3:1.
\longrightarrow Using the likelihood ratio test we also got a p-value of 0.69 .

Test statistics

Let $\mathrm{n}_{\mathrm{i}}^{0}$ denote the expected count in group if H_{0} is true.

LRT statistic

$$
\mathrm{LRT}=2 \ln \left\{\frac{\operatorname{Pr}(\text { data } \mid \mathrm{p}=\mathrm{MLE})}{\operatorname{Pr}\left(\text { data } \mid \mathrm{H}_{0}\right)}\right\}=\ldots=2 \sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \ln \left(\mathrm{n}_{\mathrm{i}} / \mathrm{n}_{\mathrm{i}}^{0}\right)
$$

χ^{2} test statistic

$$
X^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}=\sum_{i} \frac{\left(n_{i}-n_{i}^{0}\right)^{2}}{n_{i}^{0}}
$$

Null distribution of test statistic

What values of LRT (or X^{2}) should we expect, if H_{0} were true?

The null distributions of these statistics may be obtained by:

- Brute-force analytic calculations
- Computer simulations
- Asymptotic approximations
\longrightarrow If the sample size n is large, we have

$$
\mathrm{LRT} \sim \chi^{2}(\mathrm{k}-1) \text { and } \mathrm{X}^{2} \sim \chi^{2}(\mathrm{k}-1)
$$

The brute-force method

$$
\operatorname{Pr}\left(\text { LRT } \geq g \mid H_{0}\right)=\sum_{\substack{n_{1}, n_{2}, n_{3} \\ \text { giving LRT } \geq g}} \operatorname{Pr}\left(n_{1}, n_{2}, n_{3} \mid H_{0}\right)
$$

This is not feasible.

Computer simulation

1. Simulate a table conforming to the null hypothesis. E.g., simulate ($\mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$) $\sim \operatorname{Multinomial}(\mathrm{n}=100,\{1 / 4,1 / 2,1 / 4\})$
2. Calculate your test statistic.
3. Repeat steps (1) and (2) many (e.g., 1000 or 10,000) times.

Estimated critical value \rightarrow the 95th percentile of the results.
Estimated P-value \rightarrow the prop'n of results \geq the observed value.

In R, use rmultinom(n, size, prob) to do n simulations of a Multinomial(size, prob).

Example

We observe the following data:

$A A$	$A B$	$B B$
35	43	22

We imagine that these are counts

$$
\left(n_{1}, n_{2}, n_{3}\right) \sim \operatorname{Multinomial}\left(n=100,\left\{p_{1}, p_{2}, p_{3}\right\}\right)
$$

We seek to test $H_{0}: p_{1}=1 / 4, p_{2}=1 / 2, p_{3}=1 / 4$.
We calculate LRT $=4.96$ and $X^{2}=5.34$.
Referring to the asymptotic approximations (χ^{2} dist'n with 2 degrees of freedom), we obtain $p=8.4 \%$ and $p=6.9 \%$.

With 10,000 simulations under H_{0}, we get $\mathrm{p}=8.9 \%$ and $\mathrm{p}=7.4 \%$.

Example

Est'd null dist'n of LRT statistic

Est'd null dist'n of chi-square statistic

Summary and recommendation

For either the LRT or the χ^{2} test:
\longrightarrow The null distribution is approximately $\chi^{2}(\mathrm{k}-1)$ if the sample size is large.
\longrightarrow The null distribution can be approximated by simulating data under the null hypothesis.

If the sample size is sufficiently large that the expected count in each cell is ≥ 5, use the asymptotic approximation without worries.

Otherwise, consider using computer simulations.

Composite hypotheses

Sometimes, we ask not

$$
p_{A A}=0.25, p_{A B}=0.5, p_{B B}=0.25
$$

But rather something like:

$$
p_{A A}=f^{2}, p_{A B}=2 f(1-f), p_{B B}=(1-f)^{2} \quad \text { for some } f .
$$

For example: Consider the genotypes, of a random sample of individuals, at a diallelic locus.
\longrightarrow Is the locus in Hardy-Weinberg equilibrium (as expected in the case of random mating)?

Example data:

AA	AB	BB
5	20	75

Another example

ABO blood groups $\longrightarrow 3$ alleles A, B, O.
Phenotype A genotype AA or AO
B genotype BB or BO
$A B$ genotype $A B$
O genotype O
Allele frequencies: $f_{A}, f_{B}, f_{\mathrm{O}} \quad\left(\right.$ Note that $f_{A}+f_{B}+f_{\mathrm{O}}=1$)
Under Hardy-Weinberg equilibrium, we expect

$$
p_{A}=f_{A}^{2}+2 f_{A} f_{O} \quad p_{B}=f_{B}^{2}+2 f_{B} f_{O} \quad p_{A B}=2 f_{A} f_{B} \quad p_{O}=f_{O}^{2}
$$

Example data:

O	A	B	AB
104	91	36	19

LRT for example 1

Data: $\left(\mathrm{n}_{\mathrm{AA}}, \mathrm{n}_{\mathrm{AB}}, \mathrm{n}_{\mathrm{BB}}\right) \sim \operatorname{Multinomial}\left(\mathrm{n},\left\{\mathrm{p}_{\mathrm{AA}}, \mathrm{p}_{\mathrm{AB}}, \mathrm{p}_{\mathrm{BB}}\right\}\right)$
We seek to test whether the data conform reasonably to
$H_{0}: p_{A A}=f^{2}, p_{A B}=2 f(1-f), p_{B B}=(1-f)^{2} \quad$ for some f.

General MLEs:
$\hat{p}_{A A}=n_{A A} / n, \hat{p}_{A B}=n_{A B} / n, \hat{p}_{B B}=n_{B B} / n$

MLE under H_{0} :
$\hat{f}=\left(n_{A A}+n_{A B} / 2\right) / n \longrightarrow \tilde{p}_{A A}=\hat{f}^{2}, \tilde{p}_{A B}=2 \hat{f}(1-\hat{f}), \tilde{p}_{B B}=(1-\hat{f})^{2}$
LRT statistic: \quad LRT $=2 \times \ln \left\{\frac{\operatorname{Pr}\left(n_{A A}, n_{A B}, n_{B B} \mid \hat{p}_{A A}, \hat{p}_{A B}, \hat{p}_{B B}\right)}{\operatorname{Pr}\left(n_{A A}, n_{A B}, n_{B B} \mid \tilde{p}_{A A}, \tilde{\mathrm{p}}_{\mathrm{AB}}, \tilde{\mathrm{p}}_{\mathrm{BB}}\right)}\right\}$

LRT for example 2

Data: $\left(\mathrm{n}_{\mathrm{O}}, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{AB}}\right) \sim \operatorname{Multinomial}\left(\mathrm{n},\left\{\mathrm{p}_{\mathrm{O}}, \mathrm{p}_{\mathrm{A}}, \mathrm{p}_{\mathrm{B}}, \mathrm{p}_{\mathrm{AB}}\right\}\right)$
We seek to test whether the data conform reasonably to $H_{0}: p_{A}=f_{A}^{2}+2 f_{A} f_{O}, p_{B}=f_{B}^{2}+2 f_{B} f_{O}, p_{A B}=2 f_{A} f_{B}, p_{O}=f_{O}^{2}$ for some f_{0}, f_{A}, f_{B}, where $f_{0}+f_{A}+f_{B}=1$.

General MLEs: $\quad \hat{\mathrm{p}}_{\mathrm{O}}, \hat{\mathrm{p}}_{\mathrm{A}}, \hat{\mathrm{p}}_{\mathrm{B}}, \hat{\mathrm{p}}_{\mathrm{AB}}$, like before.

MLE under H_{0} : Requires numerical optimization
Call them $\left(\hat{f}_{\mathrm{O}}, \hat{\mathrm{f}}_{\mathrm{A}}, \hat{f}_{\mathrm{B}}\right) \longrightarrow\left(\tilde{\mathrm{p}}_{\mathrm{O}}, \tilde{\mathrm{p}}_{\mathrm{A}}, \tilde{\mathrm{p}}_{\mathrm{B}}, \tilde{\mathrm{p}}_{\mathrm{AB}}\right)$

LRT statistic: $\quad L R T=2 \times \ln \left\{\frac{\operatorname{Pr}\left(\mathrm{n}_{\mathrm{O}}, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{AB}} \mid \hat{\mathrm{p}}_{\mathrm{O}}, \hat{\mathrm{p}}_{\mathrm{A}}, \hat{\mathrm{p}}_{\mathrm{B}}, \hat{\mathrm{p}}_{\mathrm{AB}}\right)}{\operatorname{Pr}\left(\mathrm{n}_{\mathrm{O}}, \mathrm{n}_{\mathrm{A}}, \mathrm{n}_{\mathrm{B}}, \mathrm{n}_{\mathrm{AB}} \mid \tilde{\mathrm{p}}_{\mathrm{O}}, \tilde{\mathrm{p}}_{\mathrm{A}}, \tilde{\mathrm{p}}_{\mathrm{B}}, \tilde{\mathrm{p}}_{\mathrm{AB}}\right)}\right\}$

χ^{2} test for these examples

- Obtain the MLE(s) under H_{0}.
- Calculate the corresponding cell probabilities.
- Turn these into (estimated) expected counts under H_{0}.
- Calculate $\mathrm{X}^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$

Null distribution for these cases

- Computer simulation (with one wrinkle)
- Simulate data under H_{0} (plug in the MLEs for the observed data)
- Calculate the MLE with the simulated data
- Calculate the test statistic with the simulated data
- Repeat many times
- Asymptotic approximation
- Under H_{0}, if the sample size, n , is large, both the LRT statistic and the χ^{2} statistic follow, approximately, a χ^{2} distribution with $\mathrm{k}-\mathrm{s}-1$ degrees of freedom, where s is the number of parameters estimated under H_{0}.
- Note that $s=1$ for example 1, and $s=2$ for example 2, and so df = 1 for both examples.

Example 1

Example data:

AA	AB	BB
5	20	75

MLE: $\quad \hat{f}=(5+20 / 2) / 100=15 \%$

Expected counts:
$2.25 \quad 25.5 \quad 72.25$

Test statistics: \quad LRT statistic $=3.87 \quad X^{2}=4.65$

Asymptotic $\chi^{2}(\mathrm{df}=1)$ approx'n: $\quad \mathrm{p}=4.9 \% \quad \mathrm{p}=3.1 \%$
10,000 computer simulations: $\quad \mathrm{p}=8.2 \% \quad \mathrm{p}=2.4 \%$

Example 1

Example 2

Example data:

O	A	B	AB
104	91	36	19

MLE: $\quad \hat{f}_{\mathrm{O}}=62.8 \%, \hat{f}_{\mathrm{A}}=25.0 \%, \hat{f}_{\mathrm{B}}=12.2 \%$.

Expected counts:
$98.5 \quad 94.2 \quad 42.0 \quad 15.3$

Test statistics: \quad LRT statistic $=1.99 \quad X^{2}=2.10$
Asymptotic $\chi^{2}(d f=1)$ approx'n: $\quad p=16 \% \quad p=15 \%$
10,000 computer simulations: $p=17 \% \quad p=15 \%$

Example 2

Example 3

Data on number of sperm bound to an egg:

count | 0 | 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | 26 | 4 | 4 | 2 | 1 |

\longrightarrow Do these follow a Poisson distribution?

MLE:
$\hat{\lambda}=$ sample average $=(0 \times 26+1 \times 4+\ldots+5 \times 1) / 38=0.71$
Expected counts $\longrightarrow n_{i}^{0}=\mathrm{n} \times \mathrm{e}^{-\hat{\lambda}} \hat{\lambda}^{\mathrm{i}} / \mathrm{i}$!

Example 3

	0	1	2	3	4	5
observed	26	4	4	2	1	1
expected	18.7	13.3	4.7	1.1	0.2	0.0

$X^{2}=\sum \frac{(\text { obs-exp })^{2}}{\exp }=\ldots=42.8$
LRT $=2 \sum \mathrm{obs} \log (\mathrm{obs} / \mathrm{exp})=\ldots=18.8$

Compare to $\chi^{2}(\mathrm{df}=6-1-1=4)$
P-value $=1 \times 10^{-8}\left(\chi^{2}\right)$ and $9 \times 10^{-4}(\mathrm{LRT})$.
By simulation: p-value $=16 / 10,000\left(\chi^{2}\right)$ and $7 / 10,000(L R T)$

Null simulation results

A final note

With these sorts of goodness-of-fit tests, we are often happy when our model does fit.

In other words, we often prefer to fail to reject H_{0}.
Such a conclusion, that the data fit the model reasonably well, should be phrased and considered with caution.

We should think: how much power do I have to detect, with these limited data, a reasonable deviation from H_{0} ?

