Multiple Linear Regression
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More than one predictor
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The model with two parallel lines can be described as

Y=050 + 1 X1 + [o2Xo + €

In other words (or, equations):

{ Bo+ 51X + € if Xo=0
(50 + 52) + [1 X1 + € if Xo=1
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Multiple linear regression

A multiple linear regression model has the form

Y=o+ BiX1 + -+ fXc+e, e ~N(0, 02

The predictors (the X’s) can be categorical or numerical.

Often, all predictors are numerical or all are categorical.

And actually, categorical variables are converted into a group of
numerical ones.




Interpretation

Let X4 be the concentration of H202.

E[Y]= (o + b1 X4

— Comparing two experiments that differ by one unit concen-
tration, we expect the responses to differ by 3.

— Comparing two experiments that differ by five units concen-
tration, we expect the responses to differ by 57,.

Interpretation

Let X4 be the concentration of H202 and let X5 be the indicator for
the species of heme (0/1).

E[Y] =080+ 61 Xi + 32 Xy

— Comparing two experiments on the same species of heme
that differ by one unit concentration, we expect the responses
to differ by ;.

— Comparing two experiments at the same concentration on
the two different species of heme (Xo=1 versus X»=0), we
expect the responses to differ by (..




Interpretation

Let X4 be the concentration of H202 and let X, be the indicator for
the species of heme (0/1).

E[Y] = 5y + 81 X1 + 52 Xo + B3 Xi Xy

E[Y] =50+ 51 Xi (it x=0)

|

!

E[Y] =050+ 81 Xy + Bo+ B3 Xy =By + Bo+ (B + B3) Xi (it Xe=1)

Comparing two experiments that differ by one unit concen-
tration, we expect the responses to differ by g, if they are in
the first heme (X2=0), and expect the responses to differ by
B1 + B3 if they are in the second heme (Xo=1).

|

Estimation

We have the model

Vi=B0 + BiXit + - - - + BiXik + &, & ~ iid Normal(0, o?)

— We estimate the 5’s by the values for which
RSS =Y i(yi — %i)?

is minimized where yi = BO + B1 Xji + -+ kaik (aka “least squares”).

RSS




FYI

Calculation of the &’s (and their SEs and correlations) is not that
complicated, but without matrix algebra, the formulas are nasty.

Here is what you need to know:

o The SEs of the 3’s involve o and the x’s.

o The A’s are normally distributed.

o Obtain confidence intervals for the 8's using 3 + t x SE(3)
where t is a quantile of t dist'n with n—(k+1) d.f.

o Test Ho : 8 = 0 using |3|/SE(3)
Compare this to a t distribution with n—(k+1) d.f.

— Use the R function Im()!

The example: a full model

X1 = [H202].
X2 = 0 or 1, indicating species of heme.
y = the OD measurement.

The model: y = Bo + B Xq + ﬁng + ﬁ3X1X2 + €

l.e.,
{Bo+B1X1 te if Xo=0
y —

(Bo + B2) + (B1 + o)Xy + ¢ if Xo=1

po=0 —  Same intercepts.
f3=0 —  Same slopes.
fo=p3=0 — Same lines.




Results

> Im.out <- Im(y =~ x1 x x2, data=mydat)
> summary (lm.out)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.35305 0.00544 64.9 < 2e-16
x1 -0.00387 0.00019 -20.2 8.86e-15
X2 -0.01992 0.00769 -2.6 0.0175
x1:x2 -0.00055 0.00027 -2.0 0.0563

Residual standard error: 0.0125 on 20 degrees of freedom
Multiple R-Squared: 0.98,Adjusted R-squared: 0.977
F-statistic: 326.4 on 3 and 20 DF, p-value: < 2.2e-16

Testing many parameters

We have the model

Vi=B0 + BiXit + - - - + BiXik + &, & ~ iid Normal(0, o?)

We seek totest Hp: Srp1=---=5¢=0.

In other words, do we really have just:

yi=ﬂo + B1Xit + -+ BeXir + €, € ~ iid NormaI(O, 0’2)




What to do...

1. Fit the “full” model (with all k x’s).
2. Calculate the residual sum of squares, RSSyy.
3. Fit the “reduced” model (with only r x’s).

4. Calculate the residual sum of squares, RSS;qq.

_ (RSSeq—RSSt)/ (dfreg—dfun)
5. Calculate F = RSS. /dh .

where dfgg=n — r — 1 and dfyy=n —k — 1).

6. Under Ho, F ~ F(dfred — dffu”, dffu”).

In particular...

Assume the model
Vi=B0 + BiXit + - - - + BiXik + &, & ~ iid Normal(0, o?)

We seek to test Ho : ﬁ1 =--- =5k=0 (i.e., none of the x’s are related to y).

——  Full model: All the x’s

— Reduced model: y=fy+¢ RSSieq=> (Y —Y)?

— Py = v)2 = 25y — ¥ /K Sy — vi)?/(n =k = 1))
Compare this to a F(k, n — k — 1) dist’n.




The example

To test Bo=3=0

> Im.red <- 1Im(y x1, data=dat)
> Im.full <- Im(y =~ x1%x2, data=dat)
> anova (lm.red, lm.full)

Analysis of Variance Table

Model 1: vy 7 x1
Model 2: vy 7 x1 + x2 + x1:x2

Res.Df RSS Df Sum of Sqg F Pr (>F)
1 22 0.00975
2 20 0.00312 2 0.00663 21.22 1.1e-05
Summary

e R* is called the coefficient of determination: it is equal to the
proportion of the variability in Y explained by the regression
model.

e The sample (multiple) correlation coefficient in a regression set-
ting can be defined as the correlation between the observed
values Y and the fitted values Y from the regression model.
Mathematically, we have R = cor(Y,Y)

e R? tells us nothing about model violations.




Summary

e The notion “the higher R*, the better the model” is simply wrong.

e Assuming we have an intercept in the (linear regression) model,
the more predictors we include in the model, the higher R®.

e There is a test for “significant” reductions in R®.

e In a linear model, over-fitting does not cause bias, but (slightly)
inflates the standard error.

e Under-fitting on the other hand can cause bias.

e Randomization controls for bias due to unfitted covariates.

Diagnostics
Assumptions Diagnostics
e’s normally distributed QQ plot of residuals
€’s have constant SD Plot residuals vs fitted values
y’s linear in each of the x’s Plot residuals vs each x

No other x’s belong in the model Plot residuals vs other x’s




Another example

Sediment ingestion by the mud snail, Hyrobia minuta.

y = Amount ingested
X = Time allowed to eat

800 °

600 —

400 -

200 —

50 60 70 80

A model

Let’s consider the model
Vi = Bo + B1Xi + foX? + Bax® + ¢

where ¢ ~ iid Normal(0, o?)
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Estimated coefficients

t-val
-2.66

SE
127

Est

Intercept -339

time 75.7 15.4 4.91
time”2 -1.55 0.48 -3.22
time” 3 0.010 0.004 2.52

P-val
0.019
<0.001
0.006
0.024

Diagnostic plots
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Residuals vs. Fitted

QQ plot of residuals

Residuals vs. time
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Fitted values

Normal quantiles




