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More than one predictor

# Y X1 X2

1 0.3399 0 0

2 0.3563 0 0

3 0.3538 0 0

4 0.3168 10 0

5 0.3054 10 0

6 0.3174 10 0

7 0.2460 25 0

8 0.2618 25 0

9 0.2848 25 0

10 0.1535 50 0

11 0.1613 50 0

12 0.1525 50 0

13 0.3332 0 1

14 0.3414 0 1

15 0.3299 0 1

16 0.2940 10 1

17 0.2948 10 1

18 0.2903 10 1

19 0.2089 25 1

20 0.2189 25 1

21 0.2102 25 1

22 0.1006 50 1

23 0.1031 50 1

24 0.1452 50 1

The model with two parallel lines can be described as

Y=β0 + β1X1 + β2X2 + ε

In other words (or, equations):

Y=

{
β0 + β1X1 + ε if X2=0

(β0 + β2) + β1X1 + ε if X2=1

Multiple linear regression

A multiple linear regression model has the form

Y=β0 + β1X1 + · · · + βkXk + ε, ε ∼ N(0, σ2)

The predictors (the X’s) can be categorical or numerical.

Often, all predictors are numerical or all are categorical.

And actually, categorical variables are converted into a group of
numerical ones.



Interpretation

Let X1 be the concentration of H2O2.

E[Y] = β0 + β1 X1

−→ Comparing two experiments that differ by one unit concen-
tration, we expect the responses to differ by β1.

−→ Comparing two experiments that differ by five units concen-
tration, we expect the responses to differ by 5β1.

Interpretation

Let X1 be the concentration of H2O2 and let X2 be the indicator for
the species of heme (0/1).

E[Y] = β0 + β1 X1 + β2 X2

−→ Comparing two experiments on the same species of heme
that differ by one unit concentration, we expect the responses
to differ by β1.

−→ Comparing two experiments at the same concentration on
the two different species of heme (X2=1 versus X2=0), we
expect the responses to differ by β2.



Interpretation

Let X1 be the concentration of H2O2 and let X2 be the indicator for
the species of heme (0/1).

E[Y] = β0 + β1 X1 + β2 X2 + β3 X1X2

−→ E[Y] = β0 + β1 X1 (if X2=0)

−→ E[Y] = β0 + β1 X1 + β2 + β3 X1 = β0 + β2 + (β1 + β3) X1 (if X2=1)

−→ Comparing two experiments that differ by one unit concen-
tration, we expect the responses to differ by β1 if they are in
the first heme (X2=0), and expect the responses to differ by
β1 + β3 if they are in the second heme (X2=1).

Estimation

We have the model

yi=β0 + β1xi1 + · · · + βkxik + εi, εi ∼ iid Normal(0, σ2)

−→ We estimate the β’s by the values for which

RSS =
∑

i(yi − ŷi)
2

is minimized where ŷi = β̂0 + β̂1xi1 + · · ·+ β̂kxik (aka “least squares”).

−→ We estimate σ by σ̂ =

√
RSS

n − (k + 1)



FYI

Calculation of the β̂’s (and their SEs and correlations) is not that
complicated, but without matrix algebra, the formulas are nasty.

Here is what you need to know:

◦ The SEs of the β̂’s involve σ and the x’s.

◦ The β̂’s are normally distributed.

◦ Obtain confidence intervals for the β’s using β̂ ± t × ŜE(β̂)

where t is a quantile of t dist’n with n–(k+1) d.f.

◦ Test H0 : β = 0 using |β̂|/ŜE(β̂)

Compare this to a t distribution with n–(k+1) d.f.

−→ Use the R function lm()!

The example: a full model

x1 = [H2O2].

x2 = 0 or 1, indicating species of heme.

y = the OD measurement.

The model: y = β0 + β1X1 + β2X2 + β3X1X2 + ε

i.e.,

y =






β0 + β1X1 + ε if X2=0

(β0 + β2) + (β1 + β3)X1 + ε if X2=1

β2=0 −→ Same intercepts.
β3=0 −→ Same slopes.

β2 = β3=0 −→ Same lines.



Results

> lm.out <- lm(y ˜ x1 * x2, data=mydat)

> summary(lm.out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.35305 0.00544 64.9 < 2e-16

x1 -0.00387 0.00019 -20.2 8.86e-15

x2 -0.01992 0.00769 -2.6 0.0175

x1:x2 -0.00055 0.00027 -2.0 0.0563

Residual standard error: 0.0125 on 20 degrees of freedom

Multiple R-Squared: 0.98,Adjusted R-squared: 0.977

F-statistic: 326.4 on 3 and 20 DF, p-value: < 2.2e-16

Testing many parameters

We have the model

yi=β0 + β1xi1 + · · · + βkxik + εi, εi ∼ iid Normal(0, σ2)

We seek to test H0 : βr+1= · · ·=βk=0.

In other words, do we really have just:

yi=β0 + β1xi1 + · · · + βrxir + εi, εi ∼ iid Normal(0, σ2)

?



What to do. . .

1. Fit the “full” model (with all k x’s).

2. Calculate the residual sum of squares, RSSfull.

3. Fit the “reduced” model (with only r x’s).

4. Calculate the residual sum of squares, RSSred.

5. Calculate F = (RSSred−RSSfull)/(dfred−dffull)
RSSfull/dffull

.

where dfred=n − r − 1 and dffull=n − k − 1).

6. Under H0, F ∼ F(dfred − dffull, dffull).

In particular. . .

Assume the model

yi=β0 + β1xi1 + · · · + βkxik + εi, εi ∼ iid Normal(0, σ2)

We seek to test H0 : β1= · · ·=βk=0 (i.e., none of the x’s are related to y).

−→ Full model: All the x’s

−→ Reduced model: y=β0 + ε RSSred=
∑

i(yi − ȳ)2

−→ F=[(
∑

i(yi − ȳ)2 −
∑

i(yi − ŷi)
2)/k] / [

∑
i(yi − ŷi)

2/(n − k − 1)]

Compare this to a F(k, n – k – 1) dist’n.



The example

To test β2=β3=0

> lm.red <- lm(y ˜ x1, data=dat)

> lm.full <- lm(y ˜ x1*x2, data=dat)

> anova(lm.red,lm.full)

Analysis of Variance Table

Model 1: y ˜ x1

Model 2: y ˜ x1 + x2 + x1:x2

Res.Df RSS Df Sum of Sq F Pr(>F)

1 22 0.00975

2 20 0.00312 2 0.00663 21.22 1.1e-05

Summary

• R2 is called the coefficient of determination: it is equal to the
proportion of the variability in Y explained by the regression
model.

• The sample (multiple) correlation coefficient in a regression set-
ting can be defined as the correlation between the observed
values Y and the fitted values Ŷ from the regression model.
Mathematically, we have R = cor(Y, Ŷ )

• R2 tells us nothing about model violations.



Summary

• The notion “the higher R2, the better the model” is simply wrong.

• Assuming we have an intercept in the (linear regression) model,
the more predictors we include in the model, the higher R2.

• There is a test for “significant” reductions in R2.

• In a linear model, over-fitting does not cause bias, but (slightly)
inflates the standard error.

• Under-fitting on the other hand can cause bias.

• Randomization controls for bias due to unfitted covariates.

Diagnostics

Assumptions Diagnostics

ε’s normally distributed QQ plot of residuals

ε’s have constant SD Plot residuals vs fitted values

y’s linear in each of the x’s Plot residuals vs each x

No other x’s belong in the model Plot residuals vs other x’s



Another example

Sediment ingestion by the mud snail, Hyrobia minuta.

y = Amount ingested

x = Time allowed to eat
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A model

Let’s consider the model

yi = β0 + β1xi + β2x2
i + β3x3

i + εi where εt ∼ iid Normal(0, σ2)
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Estimated coefficients

Est SE t-val P-val

Intercept -339 127 -2.66 0.019

time 75.7 15.4 4.91 <0.001

timeˆ2 -1.55 0.48 -3.22 0.006

timeˆ3 0.010 0.004 2.52 0.024

Diagnostic plots
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