

More than one predictor

#	Y	X_1	X_2	
1	0.3399	0	0	
2	0.3563	0	0	
3	0.3538	0	0	
4	0.3168	10	0	
5	0.3054	10	0	
6	0.3174	10	0	
7	0.2460	25	0	
8	0.2618	25	0	
9	0.2848	25	0	
10	0.1535	50	0	
11	0.1613	50	0	
12	0.1525	50	0	
13	0.3332	0	1	
14	0.3414	0	1	
15	0.3299	0	1	
16	0.2940	10	1	
17	0.2948	10	1	
18	0.2903	10	1	
19	0.2089	25	1	
20	0.2189	25	1	
21	0.2102	25	1	
22	0.1006	50	1	
23	0.1031	50	1	
24	0.1452	50	1	

The model with two parallel lines can be described as

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \beta_2 \mathbf{X}_2 + \epsilon$$

In other words (or, equations):

$$\mathsf{Y} = \begin{cases} \beta_0 + \beta_1 \mathsf{X}_1 + \epsilon & \text{if } \mathsf{X}_2 = \mathbf{0} \\ \\ (\beta_0 + \beta_2) + \beta_1 \mathsf{X}_1 + \epsilon & \text{if } \mathsf{X}_2 = \mathbf{1} \end{cases}$$

Multiple linear regression

A multiple linear regression model has the form

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}_1 + \dots + \beta_k \mathbf{X}_k + \epsilon, \qquad \epsilon \sim \mathsf{N}(\mathbf{0}, \sigma^2)$$

The predictors (the X's) can be categorical or numerical.

Often, all predictors are numerical or all are categorical.

And actually, categorical variables are converted into a group of numerical ones.

Interpretation

Let X_1 be the concentration of H2O2 and let X_2 be the indicator for the species of heme (0/1).

$$\mathsf{E}[\mathsf{Y}] = \beta_0 + \beta_1 \mathsf{X}_1 + \beta_2 \mathsf{X}_2$$

- \rightarrow Comparing two experiments on the same species of heme that differ by one unit concentration, we expect the responses to differ by β_1 .
- \rightarrow Comparing two experiments at the same concentration on the two different species of heme (X₂=1 versus X₂=0), we expect the responses to differ by β_2 .

Interpretation

Let X_1 be the concentration of H2O2 and let X_2 be the indicator for the species of heme (0/1).

$$\mathsf{E}[\mathsf{Y}] = \beta_0 + \beta_1 \mathsf{X}_1 + \beta_2 \mathsf{X}_2 + \beta_3 \mathsf{X}_1 \mathsf{X}_2$$

 \longrightarrow **E**[**Y**] = β_0 + β_1 **X**₁ (if X₂=0)

$$\longrightarrow \quad \mathsf{E}[\mathbf{Y}] = \beta_0 + \beta_1 \, \mathsf{X}_1 + \beta_2 + \beta_3 \, \mathsf{X}_1 = \beta_0 + \beta_2 + (\beta_1 + \beta_3) \, \mathsf{X}_1 \quad \text{(if } \mathsf{X}_{2}=1)$$

 \rightarrow Comparing two experiments that differ by one unit concentration, we expect the responses to differ by β_1 if they are in the first heme (X₂=0), and expect the responses to differ by $\beta_1 + \beta_3$ if they are in the second heme (X₂=1).

Estimation

We have the model

 $\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{i1} + \dots + \beta_{k} \mathbf{x}_{ik} + \epsilon_{i}, \quad \epsilon_{i} \sim \text{ iid Normal}(0, \sigma^{2})$

 \rightarrow We estimate the β 's by the values for which

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2$$

is minimized where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \cdots + \hat{\beta}_k x_{ik}$ (aka "least squares").

$$\rightarrow \text{ We estimate } \sigma \text{ by } \hat{\sigma} = \sqrt{\frac{\text{RSS}}{n - (k + 1)}}$$

FYI

Calculation of the $\hat{\beta}$'s (and their SEs and correlations) is not that complicated, but without matrix algebra, the formulas are nasty.

Here is what you need to know:

- \circ The SEs of the $\hat{\beta}$'s involve σ and the x's.
- \circ The $\hat{\beta}$'s are normally distributed.

• Obtain confidence intervals for the β 's using $\hat{\beta} \pm t \times \widehat{SE}(\hat{\beta})$ where t is a quantile of t dist'n with n–(k+1) d.f.

• Test $H_0: \beta = 0$ using $|\hat{\beta}| / \widehat{SE}(\hat{\beta})$

Compare this to a t distribution with n-(k+1) d.f.

 \longrightarrow Use the R function Im()!

The example: a full model

 $x_1 = [H_2O_2].$

 $x_2 = 0$ or 1, indicating species of heme.

y = the OD measurement.

The model: $y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$

i.e.,

$$\mathbf{y} = \begin{cases} \beta_0 + \beta_1 \mathbf{X}_1 + \epsilon & \text{if } \mathbf{X}_2 = \mathbf{0} \\ \\ (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \mathbf{X}_1 + \epsilon & \text{if } \mathbf{X}_2 = \mathbf{1} \end{cases}$$

$$\begin{array}{cccc} \beta_2 = 0 & \longrightarrow & \text{Same intercepts.} \\ \beta_3 = 0 & \longrightarrow & \text{Same slopes.} \\ \beta_2 = \beta_3 = 0 & \longrightarrow & \text{Same lines.} \end{array}$$

Results

Testing many parameters

We have the model

 $\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{i1} + \dots + \beta_{k} \mathbf{x}_{ik} + \epsilon_{i}, \quad \epsilon_{i} \sim \text{ iid Normal}(0, \sigma^{2})$

We seek to test $H_0: \beta_{r+1} = \cdots = \beta_k = 0.$

In other words, do we really have just:

 $\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{i1} + \dots + \beta_{r} \mathbf{x}_{ir} + \epsilon_{i}, \quad \epsilon_{i} \sim \text{ iid Normal}(\mathbf{0}, \sigma^{2})$

What to do...

1. Fit the "full" model (with all k x's).

2. Calculate the residual sum of squares, RSS_{full} .

3. Fit the "reduced" model (with only r x's).

4. Calculate the residual sum of squares, RSS_{red} .

- $$\begin{split} \text{5. Calculate F} &= \frac{(\text{RSS}_{\text{red}} \text{RSS}_{\text{full}})/(\text{df}_{\text{red}} \text{df}_{\text{full}})}{\text{RSS}_{\text{full}}/\text{df}_{\text{full}}}. \\ \text{where df}_{\text{red}} = n r 1 \text{ and df}_{\text{full}} = n k 1). \end{split}$$
- $\text{6. Under } H_{0}\text{, } F \sim F(df_{red} df_{full}, df_{full}).$

In particular...

Assume the model

 $\mathbf{y}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{i1} + \dots + \beta_{k} \mathbf{x}_{ik} + \epsilon_{i}, \quad \epsilon_{i} \sim \text{ iid Normal}(0, \sigma^{2})$

 $\label{eq:holest} We \ seek \ to \ test \qquad H_0: \ \beta_1 = \cdots = \beta_k = 0 \quad (i.e., \ \text{none of the x's are related to y}).$

 \longrightarrow Full model: All the x's

 \longrightarrow Reduced model: $y=\beta_0+\epsilon$ RSS_{red}= $\sum_i (y_i - \bar{y})^2$

$$\label{eq:F} \begin{array}{l} \to & \mathsf{F} = [(\sum_i (y_i - \bar{y})^2 - \sum_i (y_i - \hat{y}_i)^2)/k] \, / \, [\sum_i (y_i - \hat{y}_i)^2/(n-k-1)] \\ & \text{Compare this to a F(k, n-k-1) dist'n.} \end{array}$$

The example

```
To test \beta_2 = \beta_3 = 0
```

```
> lm.red <- lm(y ~ x1, data=dat)
> lm.full <- lm(y ~ x1*x2, data=dat)
> anova(lm.red,lm.full)
Analysis of Variance Table
Model 1: y ~ x1
Model 2: y ~ x1 + x2 + x1:x2
Res.Df RSS Df Sum of Sq F Pr(>F)
1 22 0.00975
2 20 0.00312 2 0.00663 21.22 1.1e-05
```

Summary

- R² is called the coefficient of determination: it is equal to the proportion of the variability in *Y* explained by the regression model.
- The sample (multiple) correlation coefficient in a regression setting can be defined as the correlation between the observed values Y and the fitted values Ŷ from the regression model. Mathematically, we have R = cor(Y, Ŷ)
- R² tells us nothing about model violations.

Summary

- The notion "the higher R², the better the model" is simply wrong.
- Assuming we have an intercept in the (linear regression) model, the more predictors we include in the model, the higher R².
- There is a test for "significant" reductions in R².
- In a linear model, over-fitting does not cause bias, but (slightly) inflates the standard error.
- Under-fitting on the other hand can cause bias.
- Randomization controls for bias due to unfitted covariates.

Diagnostics

Assumptions

 ϵ 's normally distributed

 ϵ 's have constant SD

y's linear in each of the x's

No other x's belong in the model

Diagnostics

QQ plot of residuals

Plot residuals vs fitted values

Plot residuals vs each x

Plot residuals vs other x's

Another example

Sediment ingestion by the mud snail, Hyrobia minuta.

Estimated coefficients

	Est	SE	t-val	P-val
Intercept	-339	127	-2.66	0.019
time	75.7	15.4	4.91	<0.001
time^2	-1.55	0.48	-3.22	0.006
time^3	0.010	0.004	2.52	0.024

Diagnostic plots

