Multiple Random Variables

Multiple random variables

We essentially always consider multiple random variables at once.
\longrightarrow The key concepts: Joint, conditional and marginal distributions, and independence of RVs.

Let X and Y be discrete random variables.
\longrightarrow Joint distribution:

$$
\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})=\operatorname{Pr}(X=\mathrm{x} \text { and } Y=\mathrm{y})
$$

\longrightarrow Marginal distributions:

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{X}}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})=\sum_{\mathrm{y}} \mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}) \\
& \operatorname{Pr}_{Y}(\mathrm{y})=\operatorname{Pr}(Y)=\sum_{\mathrm{x}} \mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})
\end{aligned}
$$

\longrightarrow Conditional distributions:

$$
\mathrm{p}_{\mathrm{X} \mid \mathrm{Y}=\mathrm{y}}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x} \mid Y=\mathrm{y})=\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y}) / \mathrm{p}_{\mathrm{Y}}(\mathrm{y})
$$

Example

Sample a couple who are both carriers of some disease gene.

$\mathrm{X}=$ number of children they have $\mathrm{Y}=$ number of affected children th							
x							
$\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$	0	1	2	3	4	5	$\mathrm{Pr}(\mathrm{y})$
0	0.160	0.248	0.124	0.063	0.025	0.014	0.634
1	0	0.082	0.082	0.063	0.034	0.024	0.285
y 2	0	0	0.014	0.021	0.017	0.016	0.068
3	0	0	0	0.003	0.004	0.005	0.012
4	0	0	0	0	0.000	0.001	0.001
5	0	0	0	0	0	0.000	0.000
$p_{x}(\mathrm{x})$	0.160	0.330	0.220	0.150	0.080	0.060	

$$
\operatorname{Pr}(\mathbf{Y}=\mathbf{y} \mid \mathbf{X}=\mathbf{2})
$$

	y	0	1	2	3	4
	Pr $(Y=y \mid X=2)$	0.564	0.373	0.064	0.000	0.000
		0.000				

$$
\operatorname{Pr}(X=x \mid Y=1)
$$

$\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$	x						
	0	1	2	3	4	5	$\mathrm{p}_{\mathrm{Y}}(\mathrm{y})$
0	0.160	0.248	0.124	0.063	0.025	0.014	0.634
1	0	0.082	0.082	0.063	0.034	0.024	0.285
y 2	0	0	0.014	0.021	0.017	0.016	0.068
3	0	0	0	0.003	0.004	0.005	0.012
4	0	0	0	0	0.000	0.001	0.001
5	0	0	0	0	0	0.000	0.000
$p_{x}(x)$	0.160	0.330	0.220	0.150	0.080	0.060	

Independence

Random variables X and Y are independent if
$\longrightarrow \mathrm{P}_{X Y}(\mathrm{x}, \mathrm{y})=\mathrm{p}_{\mathrm{X}}(\mathrm{x}) \mathrm{P}_{\mathrm{Y}}(\mathrm{y})$
for every pair x, y.
In other words/symbols:
$\longrightarrow \operatorname{Pr}(X=x$ and $Y=y)=\operatorname{Pr}(X=x) \operatorname{Pr}(Y=y)$
for every pair x, y.
Equivalently,
$\longrightarrow \operatorname{Pr}(X=x \mid Y=y)=\operatorname{Pr}(X=x)$
for all x, y.

Example

Sample a random rat from Baltimore.
$\mathrm{X}=1$ if the rat is infected with virus A , and $=0$ otherwise
$Y=1$ if the rat is infected with virus B, and $=0$ otherwise

$\mathrm{p}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$				
		0	1	$\mathrm{p}_{\mathrm{Y}}(\mathrm{y})$
y	0	0.72	0.18	0.90
	1	0.08	0.02	0.10
	$p_{x}(\mathrm{x})$	0.80	0.20	

Continuous random variables

Continuous random variables have joint densities, $\mathrm{f}_{\mathrm{XY}}(\mathrm{x}, \mathrm{y})$.
\longrightarrow The marginal densities are obtained by integration:

$$
f_{X}(x)=\int f_{X Y}(x, y) d y \quad \text { and } \quad f_{Y}(y)=\int f_{X Y}(x, y) d x
$$

\longrightarrow Conditional density:

$$
f_{X \mid Y=y}(x)=f_{X Y}(x, y) / f_{Y}(y)
$$

$\longrightarrow X$ and Y are independent if:

$$
f_{X Y}(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } x, y .
$$

The bivariate normal distribution

The bivariate normal distribution

iid

More jargon:

Random variables $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ are said to be independent and identically distributed (iid) if
\longrightarrow they are independent,
\longrightarrow they all have the same distribution.

Usually such RVs are generated by
\longrightarrow repeated independent measurements, or
\longrightarrow random sampling from a large population.

Means and SDs

\longrightarrow Mean and SD of sums of random variables:

$$
\begin{array}{lr}
\mathrm{E}\left(\sum_{i} X_{i}\right)=\sum_{i} \mathrm{E}\left(X_{i}\right) & \text { no matter what } \\
\mathrm{SD}\left(\sum_{i} X_{i}\right)=\sqrt{\sum_{i}\left\{\mathrm{SD}\left(X_{i}\right)\right\}^{2}} & \text { if the } X_{i} \text { are independent }
\end{array}
$$

\longrightarrow Mean and SD of means of random variables:

$$
\begin{array}{lr}
\mathrm{E}\left(\sum_{i} X_{i} / n\right)=\sum_{i} \mathrm{E}\left(X_{i}\right) / n & \text { no matter what } \\
\mathrm{SD}\left(\sum_{i} X_{i} / n\right)=\sqrt{\sum_{i}\left\{\mathrm{SD}\left(X_{i}\right)\right\}^{2}} / n & \text { if the } X_{i} \text { are independent }
\end{array}
$$

\longrightarrow If the X_{i} are iid with mean μ and $\operatorname{SD} \sigma$:
$\mathrm{E}\left(\sum_{i} X_{i} / n\right)=\mu \quad$ and $\quad \operatorname{SD}\left(\sum_{i} X_{i} / n\right)=\sigma / \sqrt{n}$

Example

