Permutation & Non-Parametric Tests

Statistical tests

• Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)

• Form a test statistic for which large values indicate a departure from the hypothesis.

• Compare the observed value of the statistic to its distribution under the null hypothesis.
Paired t-test

Pairs \((X_1, Y_1), \ldots, (X_n, Y_n)\) independent.

\[X_i \sim \text{Normal}(\mu_A, \sigma_A) \quad Y_i \sim \text{Normal}(\mu_B, \sigma_B)\]

Test \(H_0 : \mu_A = \mu_B\) vs \(H_a : \mu_A \neq \mu_B\)

Paired t-test: \(D_i = Y_i - X_i\)

\[\rightarrow D_1, \ldots, D_n \sim \text{iid Normal}(\mu_B - \mu_A, \sigma_D)\]

Sample mean \(\bar{D}\); sample SD \(s_D\)

\[\rightarrow T = \bar{D} / (s_D / \sqrt{n})\]

Compare to a t distribution with \(n - 1\) d.f.

Example

\[\bar{d} = 14.7 \quad s_D = 19.6 \quad n = 11\]

\[T = 2.50 \quad P = 2 \times (1 - \text{pt}(2.50, 10)) = 0.031\]
Sign test

Suppose we are concerned about the normal assumption.
\((X_1, Y_1), \ldots, (X_n, Y_n)\) independent.

Test \(H_0\): X’s and Y’s have the same distribution

Another statistic: \(S = \#\{i : X_i < Y_i\} = \#\{i : D_i > 0\}\)

(the number of pairs for which \(X_i < Y_i\))

\[\rightarrow \quad \text{Under } H_0, S \sim \text{Binomial}(n, p=0.5) \]

Suppose \(S_{\text{obs}} > n/2\).

\[\rightarrow \quad \text{The P-value is} \]

\[2 \times \Pr(S \geq S_{\text{obs}} \mid H_0) = 2 \times (1 - \text{pbinom}(S_{\text{obs}} - 1, n, 0.5)) \]

Example

For our example, 8 out of 11 pairs had \(Y_i > X_i\).

P-value = \(2 \times (1 - \text{pbinom}(7, 11, 0.5)) = 23\%\)

\[\rightarrow \quad \text{Compare this to } P = 3\% \text{ for the t-test!} \]
Signed Rank test

Another “nonparametric” test.
This one is also called the Wilcoxon signed rank test.

Rank the differences according to their absolute values.

\[R = \text{sum of ranks of positive (or negative) values} \]

<table>
<thead>
<tr>
<th>D</th>
<th>28.6</th>
<th>-5.3</th>
<th>13.5</th>
<th>-12.9</th>
<th>37.3</th>
<th>25.0</th>
<th>5.1</th>
<th>34.6</th>
<th>-12.1</th>
<th>9.0</th>
<th>39.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>rank</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

\[R = 2 + 4 + 5 = 11 \]

Compare this to the distribution of \(R \) when each rank has an equal chance of being positive or negative.

\[\text{In R:} \quad \text{wilcox.test}(d) \rightarrow P = 0.054 \]

Permutation test

\((X_1, Y_1), \ldots, (X_n, Y_n) \rightarrow T_{\text{obs}}\)

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch \(X \) and \(Y \); if tails, do not switch.)
- Compare the observed \(T \) statistic to the distribution of the \(T \)-statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the \(X \)'s and \(Y \)'s have the same distribution).

Actual data:
\[(117.3, 145.9) \quad (100.1, 94.8) \quad (94.5, 108.0) \quad (135.5, 122.6) \quad (92.9, 130.2) \quad (118.9, 143.9) \]
\[(144.8, 149.9) \quad (103.9, 138.5) \quad (103.8, 91.7) \quad (153.6, 162.6) \quad (163.1, 202.5) \rightarrow T_{\text{obs}} = 2.50\]

Example shuffled data:
\[(117.3, 145.9) \quad (94.8, 100.1) \quad (108.0, 94.5) \quad (135.5, 122.6) \quad (130.2, 92.9) \quad (118.9, 143.9) \]
\[(144.8, 149.9) \quad (138.5, 103.9) \quad (103.8, 91.7) \quad (162.6, 153.6) \quad (163.1, 202.5) \rightarrow T^* = 0.19\]
Permutation distribution

![Histogram of permutation distribution with values ranging from -5 to 5.]

\[
P\text{-value} = \Pr(|T^{*}| \geq |T_{\text{obs}}|)
\]

→ Small n: Look at all \(2^n\) possible flips

→ Large n: Look at a sample (w/ repl) of 1000 such flips

Example data:

All \(2^{11}\) permutations: \(P = 0.037\); sample of 1000: \(P = 0.040\).

Paired comparisons

At least four choices:
- Paired t-test
- Sign test
- Signed rank test
- Permutation test with the t-statistic

Which to use?
- Paired t-test depends on the normality assumption
- Sign test is pretty weak
- Signed rank test ignores some information
- Permutation test is recommended

The fact that the permutation distribution of the t-statistic is generally well-approximated by a t distribution recommends the ordinary t-test. But if you can estimate the permutation distribution, do it.
2-sample t-test

\(X_1, \ldots, X_n\) iid Normal(\(\mu_A, \sigma\)) \quad Y_1, \ldots, Y_m\) iid Normal(\(\mu_B, \sigma\))

Test \(H_0: \mu_A = \mu_B\) vs \(H_a: \mu_A \neq \mu_B\)

Test statistic: \(T = \frac{\bar{X} - \bar{Y}}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}\) where \(s_p = \sqrt{\frac{s_A^2(n-1)+s_B^2(m-1)}{n+m-2}}\)

\(\rightarrow\) Compare to the t distribution with \(n + m - 2\) d.f.

Example

\[
\begin{align*}
\bar{x} &= 47.5 & s_A &= 10.5 & n &= 6 \\
\bar{y} &= 74.3 & s_B &= 20.6 & m &= 9 \\
s_p &= 17.4 & T &= -2.93 \\
\rightarrow &\quad P = 2 \times pt(-2.93, 6+9-2) = 0.011.
\end{align*}
\]
Wilcoxon rank-sum test

Rank the X’s and Y’s from smallest to largest (1, 2, ..., n+m)

\[R = \text{sum of ranks for X's} \]

(Also known as the Mann-Whitney Test)

\[
\begin{array}{ccc}
X & Y & \text{rank} \\
35.0 & 1 & \\
38.2 & 2 & \\
43.3 & 3 & \\
46.8 & 4 & \\
49.7 & 5 & \\
50.0 & 6 & \\
51.9 & 7 & \\
57.1 & 8 & \\
61.2 & 9 & \\
74.1 & 10 & \\
75.1 & 11 & \\
84.5 & 12 & \\
90.0 & 13 & \\
95.1 & 14 & \\
101.5 & 15 & \\
\end{array}
\]

\[R = 1 + 2 + 3 + 6 + 8 + 9 = 29 \]

P-value = 0.026

\[\rightarrow \text{use } \texttt{wilcox.test()} \]

Note: The distribution of R (given that X’s and Y’s have the same dist’n) is calculated numerically

Permutation test

\[
\begin{array}{ccc}
X \text{ or } Y & \text{group} \\
X_1 & 1 \\
X_2 & 1 \\
\vdots & \vdots \\
X_n & 1 \\
Y_1 & 2 \\
Y_2 & 2 \\
\vdots & \vdots \\
Y_m & 2 \\
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
X \text{ or } Y & \text{group} \\
X_1 & 2 \\
X_2 & 2 \\
\vdots & \vdots \\
X_n & 2 \\
Y_1 & 1 \\
Y_2 & 2 \\
\vdots & \vdots \\
Y_m & 1 \\
\end{array}
\quad \rightarrow \quad T^{*}
\]

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.
P-value = \(\Pr(|T^*| \geq |T_{\text{obs}}|) \)

\[\xrightarrow{\text{Small } n \text{ & } m} \text{ look at all } \binom{n+m}{n} \text{ possible shuffles}\]

\[\xrightarrow{\text{Large } n \text{ & } m} \text{ look at a sample (w/ repl) of 1000 such shuffles}\]

Example data:
All 5005 permutations: \(P = 0.015 \); sample of 1000: \(P = 0.013 \).

Estimating the permutation P-value

Let \(P \) be the true P-value (if we do *all possible* shuffles).

Do \(N \) shuffles, and let \(X \) be the number of times the statistic after shuffling is bigger or equal to the observed statistic.

\[\xrightarrow{\text{}} \hat{P} = \frac{X}{N} \quad \text{where } X \sim \text{Binomial}(N,P)\]

\[\xrightarrow{\text{}} \mathbb{E}(\hat{P}) = P \quad \text{SD}(\hat{P}) = \sqrt{\frac{P(1-P)}{N}}\]

If the “true” P-value was \(P = 5\% \), and we do \(N=1000 \) shuffles:
\(\text{SD}(\hat{P}) = 0.7\% \).
Summary

The t-test relies on a normality assumption. If this is a worry, consider:

- **Paired data:**
 - Sign test
 - Signed rank test
 - Permutation test

- **Unpaired data:**
 - Rank-sum test
 - Permutation test

→ The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.