Permutation \& Non-Parametric Tests

Statistical tests

- Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)
- Form a test statistic for which large values indicate a departure from the hypothesis.
- Compare the observed value of the statistic to its distribution under the null hypothesis.

Paired t-test

Pairs $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{\mathrm{n}}, Y_{\mathrm{n}}\right)$ independent.
$X_{\mathrm{i}} \sim \operatorname{Normal}\left(\mu_{\mathrm{A}}, \sigma_{\mathrm{A}}\right) \quad Y_{\mathrm{i}} \sim \operatorname{Normal}\left(\mu_{\mathrm{B}}, \sigma_{\mathrm{B}}\right)$
Test $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$

Paired t-test: $D_{i}=Y_{i}-X_{i}$
$\longrightarrow D_{1}, \ldots, D_{\mathrm{n}} \sim$ iid $\operatorname{Normal}\left(\mu_{\mathrm{B}}-\mu_{\mathrm{A}}, \sigma_{\mathrm{D}}\right)$

Sample mean \bar{D}; sample $\operatorname{SD} \mathrm{s}_{\mathrm{D}}$

$$
\longrightarrow \mathrm{T}=\bar{D} /\left(\mathrm{s}_{\mathrm{D}} / \sqrt{\mathrm{n}}\right)
$$

Compare to a t distribution with $\mathrm{n}-1$ d.f.

Example

$$
\overline{\mathrm{d}}=14.7 \quad \mathrm{~s}_{\mathrm{D}}=19.6 \quad \mathrm{n}=11
$$

$$
\mathrm{T}=2.50 \quad \mathrm{P}=2 \star(1-\mathrm{pt}(2.50,10))=0.031
$$

Wilcoxon signed rank test

A "nonparametric" test.

Rank the differences according to their absolute values.
$R=$ sum of ranks of positive (or negative) values.

D	28.6	-5.3	13.5	-12.9	37.3	25.0	5.1	34.6	-12.1	9.0	39.4
rank	8	2	6	5	10	7	1	9	4	3	11

$R=2+4+5=11$
Compare this to the distribution of R when each rank has an equal chance of being positive or negative.

In R: wilcox.test (d) $\longrightarrow P=0.054$

Permutation test

$\left(X_{1}, Y_{1}\right), \ldots,\left(X_{\mathrm{n}}, Y_{\mathrm{n}}\right) \longrightarrow \mathrm{T}_{\text {obs }}$

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch X and Y; if tails, do not switch.)
- Compare the observed T statistic to the distribution of the T -statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the X's and Y's have the same distribution).

Actual data:
(117.3,145.9) (100.1,94.8) (94.5,108.0) (135.5,122.6) (92.9,130.2) (118.9,143.9)
$(144.8,149.9)(103.9,138.5)(103.8,91.7)(153.6,162.6)(163.1,202.5) \longrightarrow T_{\text {obs }}=2.50$

Example shuffled data:

(117.3,145.9) (94.8,100.1) (108.0,94.5) (135.5,122.6) (130.2,92.9) (118.9,143.9)
$(144.8,149.9)(138.5,103.9)(103.8,91.7)(162.6,153.6)(163.1,202.5) \longrightarrow T^{\star}=0.19$

Permutation distribution

P-value $=\operatorname{Pr}\left(\left|\mathrm{T}^{\star}\right| \geq\left|\mathrm{T}_{\text {obs }}\right|\right)$
\longrightarrow Small n: Look at all 2^{n} possible flips.
\longrightarrow Large n : Look at a sample (w/ repl) of 1000 such flips.

Example data:
All 2^{11} permutations: $P=0.037$; sample of 1000: $P=0.040$.

Paired comparisons

At least three choices:

- Paired t-test.
- Signed rank test.
- Permutation test with the t-statistic.

Which to use?

- Paired t-test depends on the normality assumption.
- Signed rank test ignores some information.
- Permutation test is recommended.

The fact that the permutation distribution of the t-statistic is generally well-approximated by a t distribution recommends the ordinary t-test. But if you can estimate the permutation distribution, do it.

2-sample t-test

$X_{1}, \ldots, X_{\mathrm{n}}$ iid $\operatorname{Normal}\left(\mu_{\mathrm{A}}, \sigma\right) \quad Y_{1}, \ldots, Y_{\mathrm{m}}$ iid $\operatorname{Normal}\left(\mu_{\mathrm{B}}, \sigma\right)$
Test $\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{\mathrm{B}}$ vs $\mathrm{H}_{\mathrm{a}}: \mu_{\mathrm{A}} \neq \mu_{\mathrm{B}}$

Test statistic: $\mathrm{T}=\frac{\bar{X}-\bar{Y}}{\mathrm{~s}_{\mathrm{p}} \sqrt{\frac{1}{n}+\frac{1}{m}}} \quad$ where $\quad \mathrm{s}_{\mathrm{p}}=\sqrt{\frac{\mathrm{s}_{\mathrm{A}}^{2}(n-1)+\mathrm{s}_{\mathrm{B}}^{2}(m-1)}{n+-2}}$
\longrightarrow Compare to the t distribution with $\mathrm{n}+\mathrm{m}-2$ d.f.

Example

$$
\begin{aligned}
& \mathbf{Y} \\
& \bar{x}=47.5 \quad \mathrm{~s}_{\mathrm{A}}=10.5 \quad \mathrm{n}=6 \\
& \overline{\mathrm{y}}=74.3 \quad \mathrm{~s}_{\mathrm{B}}=20.6 \quad \mathrm{~m}=9 \\
& \mathrm{~s}_{\mathrm{p}}=17.4 \quad \mathrm{~T}=-2.93 \\
& \longrightarrow P=2 * \operatorname{pt}(-2.93,6+9-2)=0.011 \text {. }
\end{aligned}
$$

Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest (1, 2, ..., n+m)
R = sum of ranks for X's.

$38.2 \quad 2$
$43.3 \quad 3$
$46.8 \quad 4$
49.75
$50.0 \quad 6$
$51.9 \quad 7$
$57.1 \quad 8$
$61.2 \quad 9$
$74.1 \quad 10$
$75.1 \quad 11$
$84.5 \quad 12$
$90.0 \quad 13$
$95.1 \quad 14$
$101.5 \quad 15$
(Also known as the Mann-Whitney Test)
$R=1+2+3+6+8+9=29$
P -value $=0.026$
\longrightarrow use wilcox.test()

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically.

Permutation test

X or Y	group		
X_{1}	1		
X_{2}	1		
\vdots	1		
X_{n}	1	$\rightarrow \mathrm{~T}_{\text {obs }}$	
Y_{1}	2		
Y_{2}	2		
\vdots	2		
Y_{m}	2		

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.

Permutation distribution

P-value $=\operatorname{Pr}\left(\left|\mathrm{T}^{\star}\right| \geq\left|\mathrm{T}_{\text {obs }}\right|\right)$
\longrightarrow Small n \& m: Look at all $\binom{n+m}{n}$ possible shuffles.
\longrightarrow Large n \& m : Look at a sample ($\mathrm{w} / \mathrm{repl}$) of 1000 such shuffles.
Example data:
All 5005 permutations: $P=0.015$; sample of 1000: $P=0.013$.

Estimating the permutation P-value

Let P be the true P -value (if we do all possible shuffles).

Do N shuffles, and let X be the number of times the statistic after shuffling is bigger or equal to the observed statistic.
$\longrightarrow \hat{\mathrm{P}}=\frac{X}{N} \quad$ where $X \sim \operatorname{Binomial}(\mathrm{~N}, \mathrm{P})$
$\longrightarrow E(\hat{P})=P \quad S D(\hat{P})=\sqrt{\frac{P(1-P)}{N}}$

If the "true" P-value was $P=5 \%$, and we do $N=1000$ shuffles: $S D(\hat{P})=0.7 \%$.

Summary

The t-test relies on a normality assumption.
If this is a worry, consider:

- Paired data:
- Signed rank test.
- Permutation test.
- Unpaired data:
- Rank-sum test.
- Permutation test.
\longrightarrow The crucial assumption is independence!
The fact that the permutation distribution of the t -statistic is often closely approximated by a t distribution is good support for just doing t -tests.

