Permutation & Non-Parametric Tests

Statistical tests

- Gather data to assess some hypothesis (e.g., does this treatment have an effect on this outcome?)
- Form a test statistic for which large values indicate a departure from the hypothesis.
- Compare the observed value of the statistic to its distribution under the null hypothesis.

Paired t-test

Pairs $(X_1, Y_1), \dots, (X_n, Y_n)$ independent.

$$m{X_i} \sim extsf{Normal}(\mu_{\mathtt{A}}, \sigma_{\mathtt{A}}) \qquad \quad m{Y_i} \sim extsf{Normal}(\mu_{\mathtt{B}}, \sigma_{\mathtt{B}})$$

Test
$$H_0: \mu_A = \mu_B$$
 vs $H_a: \mu_A \neq \mu_B$

Paired t-test:
$$D_i = Y_i - X_i$$

$$\longrightarrow D_1, \dots, D_n \sim \text{iid Normal}(\mu_B - \mu_A, \sigma_D)$$

Sample mean \bar{D} ; sample SD s_D

$$\longrightarrow$$
 T = $\bar{D}/(s_D/\sqrt{n})$

Compare to a t distribution with n - 1 d.f.

Example

$$\bar{d} = 14.7$$
 $s_D = 19.6$ $n = 11$

$$T = 2.50$$
 $P = 2*(1-pt(2.50,10)) = 0.031$

Wilcoxon signed rank test

A "nonparametric" test.

Rank the differences according to their absolute values.

R = sum of ranks of positive (or negative) values.

$$R = 2 + 4 + 5 = 11$$

Compare this to the distribution of R when each rank has an equal chance of being positive or negative.

In R: wilcox.test(d)
$$\longrightarrow$$
 P = 0.054

Permutation test

$$(X_1, Y_1), \ldots, (X_n, Y_n) \longrightarrow \mathsf{T}_{\mathsf{obs}}$$

- Randomly flip the pairs. (For each pair, toss a fair coin. If heads, switch X and Y; if tails, do not switch.)
- Compare the observed T statistic to the distribution of the T-statistic when the pairs are flipped at random.
- If the observed statistic is extreme relative to this permutation/randomization distribution, then reject the null hypothesis (that the X's and Y's have the same distribution).

Actual data:

```
\begin{array}{l} (117.3,145.9) \; (100.1,94.8) \; (94.5,108.0) \; (135.5,122.6) \; (92.9,130.2) \; (118.9,143.9) \\ (144.8,149.9) \; (103.9,138.5) \; (103.8,91.7) \; (153.6,162.6) \; (163.1,202.5) \; \longrightarrow \; T_{obs} = 2.50 \end{array}
```

Example shuffled data:

```
(117.3,145.9) (94.8,100.1) (108.0,94.5) (135.5,122.6) (130.2,92.9) (118.9,143.9) (144.8,149.9) (138.5,103.9) (103.8,91.7) (162.6,153.6) (163.1,202.5) \longrightarrow T* = 0.19
```

Permutation distribution

P-value = $Pr(|T^{\star}| \geq |T_{obs}|)$

- → Small n: Look at all 2ⁿ possible flips.
- → Large n: Look at a sample (w/ repl) of 1000 such flips.

Example data:

All 2^{11} permutations: P = 0.037; sample of 1000: P = 0.040.

Paired comparisons

At least three choices:

- Paired t-test.
- Signed rank test.
- Permutation test with the t-statistic.

Which to use?

- Paired t-test depends on the normality assumption.
- Signed rank test ignores some information.
- Permutation test is recommended.

The fact that the permutation distribution of the t-statistic is generally well-approximated by a t distribution recommends the ordinary t-test. But if you can estimate the permutation distribution, do it.

2-sample t-test

$$X_1, \ldots, X_n$$
 iid Normal (μ_A, σ) Y_1, \ldots, Y_m iid Normal (μ_B, σ)

Test
$$H_0: \mu_A = \mu_B$$
 vs $H_a: \mu_A \neq \mu_B$

$$\text{Test statistic: } T = \frac{\overline{X} - \overline{Y}}{s_p \; \sqrt{\frac{1}{n} + \frac{1}{m}}} \quad \text{ where } \quad s_p = \sqrt{\frac{s_A^2(n-1) + s_B^2(m-1)}{n+m-2}}$$

 \longrightarrow Compare to the t distribution with n + m - 2 d.f.

Example

$$\bar{x} = 47.5$$
 $s_A = 10.5$ $n = 6$

$$\bar{y} = 74.3$$
 $s_B = 20.6$ $m = 9$

$$s_p = 17.4$$
 $T = -2.93$

$$\rightarrow$$
 P = 2*pt (-2.93, 6+9-2) = 0.011.

Wilcoxon rank-sum test

Rank the X's and Y's from smallest to largest (1, 2, ..., n+m)

R = sum of ranks for X's.

(Also known as the Mann-Whitney Test)

Χ	Υ	rank
35.0		1
38.2		2
43.3		3
	46.8	4
	49.7	5
50.0		6
	51.9	7
57.1		8
61.2		9
	74.1	10
	75.1	11
	84.5	12
	90.0	13
	95.1	14
	101.5	15

$$R = 1 + 2 + 3 + 6 + 8 + 9 = 29$$

P-value = 0.026

$$\rightarrow$$
 use wilcox.test()

Note: The distribution of R (given that X's and Y's have the same dist'n) is calculated numerically.

Permutation test

X or Y	group	
X_1	1	_
X_2	1	
:	1	
X_{n}	1	$ o T_{obs}$
Y_1	2	
Y_2	2	
:	2	
Y_{m}	2	_

X or Y	group	
X_1	2	_
X_2	2	
i	1	
X_{n}	2	$ ightarrow$ T *
Y_1	1	
Y_2	2	
ŧ	1	
Y_{m}	1	

Group status shuffled

Compare the observed t-statistic to the distribution obtained by randomly shuffling the group status of the measurements.

Permutation distribution

P-value = $Pr(|T^*| \ge |T_{obs}|)$

- \longrightarrow Small n & m: Look at all $\binom{n+m}{n}$ possible shuffles.
- → Large n & m: Look at a sample (w/repl) of 1000 such shuffles.

Example data:

All 5005 permutations: P = 0.015; sample of 1000: P = 0.013.

Estimating the permutation P-value

Let P be the true P-value (if we do all possible shuffles).

Do \mathbb{N} shuffles, and let X be the number of times the statistic after shuffling is bigger or equal to the observed statistic.

$$\longrightarrow \hat{P} = \frac{X}{N}$$
 where $X \sim \text{Binomial}(N,P)$

$$\longrightarrow \ E(\hat{P}) = P \qquad SD(\hat{P}) = \sqrt{\frac{P(1-P)}{N}}$$

If the "true" P-value was P = 5%, and we do N=1000 shuffles: $SD(\hat{P}) = 0.7\%$.

Summary

The t-test relies on a normality assumption.

If this is a worry, consider:

- Paired data:
 - o Signed rank test.
 - o Permutation test.
- Unpaired data:
 - o Rank-sum test.
 - o Permutation test.
- → The crucial assumption is independence!

The fact that the permutation distribution of the t-statistic is often closely approximated by a t distribution is good support for just doing t-tests.