Random Variables and Distributions

Where are we going?

Deer ticks: Are they attracted by deer-gland-substance?
Suppose that 21 out of 30 deer ticks go to the deer-gland-substancetreated rod, while the other 9 go to the control rod.
\longrightarrow Would this be a reasonable result if the deer ticks were choosing between the rods completely at random?

Mouse survival following treatment: Does the treatment have an effect?

Suppose that $15 / 30$ control mice die, while $8 / 30$ treatment mice die.
\longrightarrow Is the probability that a control mouse dies the same as the probability that a treatment mouse dies?

Random variables

Random variable: A number assigned to each outcome of a random experiment.

Example 1: I toss a brick at my neighbor's house.
$D=$ distance the brick travels
$X=1$ if I break a window; 0 otherwise
$Y=$ cost of repair
$T=$ time until the police arrive
N = number of people injured
Example 2: \quad Treat 10 spider mites with DDT.
$X=$ number of spider mites that survive
$P=$ proportion of mites that survive.

Further examples

Example 3: Pick a random student in the School.
$S=1$ if female; 0 otherwise
$H=$ his/her height
$W=$ his/her weight
$Z=1$ if Canadian citizen; 0 otherwise
$T=$ number of teeth he/she has
Example 4: \quad Sample 20 students from the School
$H_{i}=$ height of student i
$\bar{H}=$ mean of the 20 student heights
$S_{H}=$ sample SD of heights
$T_{i}=$ number of teeth of student i
$\bar{T}=$ average number of teeth

Random variables are ...

Discrete: Take values in a countable set
(e.g., the positive integers).

Example: the number of teeth, number of gall stones, number of birds, number of cells responding to a particular antigen, number of heads in 20 tosses of a coin.

Continuous: Take values in an interval (e.g., $[0,1]$ or the real line).

Example: height, weight, mass, some measure of gene expression, blood pressure.

Random variables may also be partly discrete and partly continuous (for example, mass of gall stones, concentration of infecting bacteria).

Probability function

Consider a discrete random variable, X.
The probability function (or probability distribution, or probability mass function) of X is

$$
\mathrm{p}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})
$$

Note that $p(x) \geq 0$ for all x and $\sum p(x)=1$.

x	$p(x)$
1	0.5
3	0.1
5	0.1
7	0.3

Cumulative distribution function (cdf)

The cdf of X is $\mathrm{F}(\mathrm{x})=\operatorname{Pr}(X \leq \mathrm{x})$

x	$p(x)$
1	0.5
3	0.1
5	0.1
7	0.3

x	$\mathrm{F}(\mathrm{x})$
$(-\infty, 1)$	0
$[1,3)$	0.5
$[3,5)$	0.6
$[5,7)$	0.7
$[7, \infty)$	1.0

Binomial random variable

Prototype: The number of heads in n independent tosses of a coin, where $\operatorname{Pr}($ heads $)=p$ for each toss.
$\rightarrow \mathrm{n}$ and p are called parameters.
Alternatively, imagine an urn containing red balls and black balls, and suppose that p is the proportion of red balls. Consider the number of red balls in n random draws with replacement from the urn.

Example 1: \quad Sample n people at random from a large population, and consider the number of people with some property (e.g., that are graduate students or that have exactly 32 teeth).

Example 2: \quad Apply a treatment to n mice and count the number of survivors (or the number that are dead).

Example 3: \quad Apply a large dose of DDT to 30 groups of 10 spider mites. Count the number of groups with at least two surviving spider mites.

Binomial distribution

Consider the Binomial(n,p) distribution.
That is, the number of red balls in n draws with replacement from an urn for which the proportion of red balls is p.
\longrightarrow What is its probability function?

Example: Let $X \sim \operatorname{Binomial}(\mathrm{n}=9, \mathrm{p}=0.2)$.
\longrightarrow We seek $p(x)=\operatorname{Pr}(X=x)$ for $x=0,1,2, \ldots, 9$.
$p(0)=\operatorname{Pr}(X=0)=\operatorname{Pr}($ no red balls $)=(1-p)^{n}=0.8^{9} \approx 13 \%$.
$\mathrm{p}(9)=\operatorname{Pr}(X=9)=\operatorname{Pr}($ all red balls $)=\mathrm{p}^{\mathrm{n}}=0.2^{9} \approx 5 \times 10^{-7}$
$p(1)=\operatorname{Pr}(X=1)=\operatorname{Pr}($ exactly one red ball $)=\ldots$?

Binomial distribution

$$
\begin{aligned}
\mathrm{p}(1)= & \operatorname{Pr}(X=1)=\operatorname{Pr}(\text { exactly one red ball }) \\
= & \operatorname{Pr}(\text { RBBBBBBBB or } \operatorname{BRBBBBBBB} \text { or } \ldots \text { or } \operatorname{BBBBBBBBR}) \\
= & \operatorname{Pr}(\mathrm{RBBBBBBBB})+\operatorname{Pr}(\mathrm{BRBBBBBBB})+\operatorname{Pr}(\text { BBRBBBBBB }) \\
& +\operatorname{Pr}(\text { BBBRBBBBB})+\operatorname{Pr}(\text { BBBBRBBBB }) \\
& +\operatorname{Pr}(B B B B B R B B B)+\operatorname{Pr}(\text { BBBBBBRBB }) \\
& +\operatorname{Pr}(B B B B B B B R B)+\operatorname{Pr}(\text { BBBBBBBBR }) \\
= & \mathrm{p}(1-\mathrm{p})^{8}+\mathrm{p}(1-\mathrm{p})^{8}+\ldots \mathrm{p}(1-\mathrm{p})^{8}=9 \mathrm{p}(1-\mathrm{p})^{8} \approx 30 \% .
\end{aligned}
$$

How about $p(2)=\operatorname{Pr}(X=2)$?
How many outcomes have 2 red balls among the 9 balls drawn?
\longrightarrow This is a problem of combinatorics. That is, counting!

Getting at $\operatorname{Pr}(X=2)$

> RRBBBBBBB RBRBBBBBB RBBRBBBBB RBBBRBBBBB RBBBBRBBB RBBBBBBRBB RBBBBBBBRB RBBBBBBBBR BRRBBBBBB BRBRBBBBBB BRBBRBBBBB BRBBBRBBBB BRBBBBRBB BRBBBBBBRB BRBBBBBBBR BBRRBBBBBB BBRBRBBBBB BBRBBRBBBB BBRBBBBRBB BBRBBBBRBB BBRBBBBBBR BBBRRBBBBB BBBRBBRBBB BBBRBBRBBB BBBRBBBRB BBBRBBBBBR BBBBRRRBBBB BBBBRBRBB BBBBRBBRB BBBBRBBBR BBBBBRRBBB BBBBBRBRB BBBBBRBBR BBBBBBRRRB BBBBBBRBR BBBBBBBRR

How many are there?

$$
9 \times 8 / 2=36
$$

The binomial coefficient

The number of possible samples of size k selected from a population of size n :

$$
\binom{n}{k}=\frac{n!}{k!\times(n-k)!}
$$

$\longrightarrow \mathrm{n}!=\mathrm{n} \times(\mathrm{n}-1) \times(\mathrm{n}-2) \times \ldots \times 3 \times 2 \times 1$
$\longrightarrow 0!=1$

For a Binomial(n,p) random variable:

$$
\operatorname{Pr}(X=k)=\binom{n}{k} p^{k}(1-p)^{(n-k)}
$$

Example

Suppose $\operatorname{Pr}($ mouse survives treatment $)=90 \%$, and we apply the treatment to 10 random mice.

$$
\begin{aligned}
\operatorname{Pr}(\text { exactly } 7 \text { mice survive }) & =\binom{10}{7} \times(0.9)^{7} \times(0.1)^{3} \\
& =\frac{10 \times 9 \times 8}{3 \times 2} \times(0.9)^{7} \times(0.1)^{3} \\
& =120 \times(0.9)^{7} \times(0.1)^{3} \\
& \approx 5 \%
\end{aligned}
$$

$\operatorname{Pr}($ fewer than 9 survive $)=1-p(9)-p(10)$

$$
\begin{aligned}
& =1-10 \times(0.9)^{9} \times(0.1)-(0.9)^{10} \\
& \approx 26 \%
\end{aligned}
$$

The world is entropy driven

Assume we are flipping a fair coin (independently) ten times. Let X be the random variable that describes the number of heads H in the experiment.

$\operatorname{Pr}($ TTTTTTTTTTT $)=\operatorname{Pr}($ HTTHHHTHTH $)=(1 / 2)^{10}$

\longrightarrow There is only one possible outcome with zero heads.
\longrightarrow There are 210 possibilities for outcomes with six heads.
Thus,
$\longrightarrow \operatorname{Pr}(X=0)=(1 / 2)^{10} \approx 0.1 \%$.
$\longrightarrow \operatorname{Pr}(X=6)=210 \times(1 / 2)^{10} \approx 20.5 \%$.

Binomial distributions

Binomial distributions

Binomial($n=50, p=0.5$)

Binomial($n=20, p=0.5$)

Binomial($\mathrm{n}=100, \mathrm{p}=0.5$)

Binomial distributions

Binomial distributions

Binomial($\mathrm{n}=10, \mathrm{p}=0.1$)

Binomial($n=50, p=0.1$)

Binomial $(\mathrm{n}=20, \mathrm{p}=0.1$)

Binomial $(\mathrm{n}=100, \mathrm{p}=\mathbf{0 . 1})$

Binomial distributions

Binomial $(\mathrm{n}=400, \mathrm{p}=0.1)$

Expected value and standard deviation

\longrightarrow The expected value (or mean) of a discrete random variable X with probability function $p(x)$ is

$$
\mu=\mathrm{E}(X)=\sum_{\mathrm{x}} \mathrm{xp}(\mathrm{x})
$$

\longrightarrow The variance of a discrete random variable X with probability function $p(x)$ is

$$
\sigma^{2}=\operatorname{var}(X)=\sum_{x}(x-\mu)^{2} \mathrm{p}(\mathrm{x})
$$

\longrightarrow The standard deviation (SD) of X is

$$
\mathrm{SD}(X)=\sqrt{\operatorname{var}(X)}
$$

Mean and SD of binomial RVs

If $X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p})$, then

$$
\begin{gathered}
\mathrm{E}(X)=\mathrm{np} \\
\mathrm{SD}(X)=\sqrt{\mathrm{np(1-p)}}
\end{gathered}
$$

\longrightarrow Examples:

n	p	mean	SD
10	10%	1	0.9
10	30%	3	1.4
10	50%	5	1.6
10	90%	9	0.9

Calculations in \mathbf{R}

\longrightarrow Simulate binomial random variables
rbinom(m, size, prob)
\longrightarrow The binomial probability function: $\operatorname{Pr}(X=x)$ dbinom(x, size, prob)
\longrightarrow The binomial CDF: $\operatorname{Pr}(\mathrm{X} \leq \mathrm{q})$ pbinom(q, size, prob)
\longrightarrow The inverse CDF: the smallest q such that $\operatorname{Pr}(X \leq q) \geq p$ qbinom(p, size, prob)

Binomial random variable

Number of successes in n trials where:
\longrightarrow Trials independent
$\longrightarrow \mathrm{p}=\operatorname{Pr}($ success $)$ is constant

The number of successes in n trials does not necessarily follow a binomial distribution!

Deviations from the binomial:
\longrightarrow Varying p
\longrightarrow Clumping or repulsion (non-independence)

Examples

Suppose survival differs between genders:
$\operatorname{Pr}($ survive \mid male $)=10 \%$ but $\operatorname{Pr}($ survive \mid female $)=80 \%$.
\longrightarrow Pick 4 male mice and 6 female mice.
The number of survivors is not binomial.
\longrightarrow Pick 10 random mice (with $\operatorname{Pr}($ mouse is male) $=40 \%$). The number of survivors is binomial. $p=0.4 \times 0.1+0.6 \times 0.8=0.52$.

Examples

Examples

Consider Mendel's pea experiments.

Purple or white flowers, purple dominant to white:
F_{0} genotypes are $P P$ and $w w, \mathrm{~F}_{1}$ genotypes are $P w$.
\longrightarrow Pick a random F_{2}. Self it and acquire 10 progeny.
The number of progeny with purple flowers is not binomial.
Unless we condition on the genotype of the F_{2} plant.
\longrightarrow Pick 10 random F_{2} 's. Self each and take a child from each. The number of progeny with purple flowers is binomial.
$p=(1 / 4) \times 1+(1 / 2) \times(3 / 4)+(1 / 4) \times 0=5 / 8$.
$\operatorname{Pr}($ a progeny has a purple flower $)=$
$\operatorname{Pr}($ purple and $\{F 2$ is $P P\})+\operatorname{Pr}($ purple and $\{F 2$ is $\operatorname{Pw}\})+\operatorname{Pr}($ purple and $\{F 2$ is ww $\})=$ $\operatorname{Pr}(F 2$ is $P P) \times \operatorname{Pr}($ purple $\mid F 2$ is $P P)+\operatorname{Pr}(F 2$ is $P w) \times \operatorname{Pr}($ purple $\mid F 2$ is $P w)+\operatorname{Pr}(F 2$ is ww $) \times \operatorname{Pr}($ purple $\mid F 2$ is ww $)$

Multinomial distribution

- Imagine an urn with k types of balls.
- Let p_{i} denote the proportion of type i .
- Draw n balls with replacement.
- Outcome: $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$, with $\sum_{i} n_{i}=n$, where n_{i} is the no. balls drawn that were of type i .
$\longrightarrow P\left(X_{1}=n_{1}, \ldots, X_{k}=n_{k}\right)=\frac{n!}{n_{1}!\times \cdots \times n_{k}!} p_{1}^{n_{1}} \times \cdots \times p_{k}^{n_{k}}$
if $\quad 0 \leq n_{i} \leq n, \quad \sum_{i} n_{i}=n \quad$ and $\quad 0<p_{i}<1, \quad \sum_{i} p_{i}=1$.

Otherwise $\mathrm{P}\left(X_{1}=\mathrm{n}_{1}, \ldots, X_{\mathrm{k}}=\mathrm{n}_{\mathrm{k}}\right)=0$.

Example

$A A$	$A B$	$B B$
35	43	22

\longrightarrow Do these data correspond reasonably to the proportions 1:2:1?

Let $\quad\left(p_{1}, p_{2}, p_{3}\right)=(0.25,0.50,0.25)$ and $n=100$.

$$
\begin{aligned}
\mathrm{P}\left(X_{1}=35, X_{2}=43, X_{3}=22\right) & =\frac{100!}{35!43!22!} 0.25^{35} 0.50^{43} 0.25^{22} \\
& \approx 7.3 \times 10^{-4}
\end{aligned}
$$

Poisson distribution

Consider a Binomial(n, p) where
$\longrightarrow n$ is really large
$\longrightarrow p$ is really small
For example, suppose each well in a microtiter plate contains $50,000 \mathrm{~T}$ cells, and that $1 / 100,000$ cells respond to a particular antigen.
Let X be the number of responding cells in a well.
\longrightarrow In this case, X follows a Poisson distribution approximately.

Let $\lambda=\mathrm{n} \mathrm{p}=\mathrm{E}(X)$.
$\longrightarrow \mathrm{p}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})=\mathrm{e}^{-\lambda} \lambda^{\mathrm{x}} / \mathrm{x}!$
Note that $S D(X)=\sqrt{\lambda}$.

Poisson distribution

Poisson ($\lambda=1 / 2$)

Poisson ($\lambda=2$)

Poisson($\lambda=1$)

Poisson ($\lambda=4$)

Example

Suppose there are 100,000 T cells in each well of a microtiter plate. Suppose that $1 / 80,000 \mathrm{~T}$ cells respond to a particular antigen.

Let $X=$ number of responding T cells in a well.
$\longrightarrow X \sim$ Poisson $(\lambda=1.25)$.
$\longrightarrow \mathrm{E}(X)=1.25$
$\longrightarrow \mathrm{SD}(X)=\sqrt{1.25} \approx 1.12$.
$\operatorname{Pr}(X=0)=\exp (-1.25) \approx 29 \%$.
$\operatorname{Pr}(X>0)=1-\exp (-1.25) \approx 71 \%$.
$\operatorname{Pr}(X=2)=\exp (-1.25) \times(1.25)^{2} / 2 \approx 22 \%$.

Calculations in R

\longrightarrow Simulate poisson random variables
rpois(m, lambda)
\longrightarrow The poisson probability function: $\operatorname{Pr}(X=x)$ dpois(m, lambda)
\longrightarrow The poisson CDF: $\operatorname{Pr}(X \leq q)$ ppois(m, lambda)
\longrightarrow The inverse CDF: the smallest q such that $\operatorname{Pr}(X \leq q) \geq p$ qpois(m, lambda)

$Y=a+b X$

Suppose X is a discrete random variable with probability function p , so that $\mathrm{p}(\mathrm{x})=\operatorname{Pr}(X=\mathrm{x})$.
\longrightarrow Expected value: $\mathrm{E}(X)=\sum_{\mathrm{x}} \mathrm{xp}(\mathrm{x})$
\longrightarrow Standard deviation: $\mathrm{SD}(X)=\sqrt{\sum_{\mathrm{x}}[\mathrm{x}-\mathrm{E}(\mathrm{X})]^{2} \mathrm{p}(\mathrm{x})}$
Let $Y=\mathrm{a}+\mathrm{b} X$ where a and b are numbers. Then Y is a random variable (like X), and
$\longrightarrow \mathrm{E}(Y)=\mathrm{a}+\mathrm{bE}(X)$
$\longrightarrow \mathrm{SD}(Y)=|\mathrm{b}| \mathrm{SD}(X)$
In particular, if $\mu=\mathrm{E}(X), \sigma=\mathrm{SD}(X)$, and $Z=(X-\mu) / \sigma$, then
$\longrightarrow \mathrm{E}(Z)=0$
$\longrightarrow \mathrm{SD}(Z)=1$

Example

Suppose $X \sim \operatorname{Binomial}(\mathrm{n}, \mathrm{p}) \quad \rightarrow \quad$ number of successes
$\longrightarrow \mathrm{E}(X)=\mathrm{np}$
$\longrightarrow S D(X)=\sqrt{n p(1-p)}$

Let $P=X / \mathrm{n} \rightarrow$ proportion of successes
$\longrightarrow \mathrm{E}(P)=\mathrm{E}(X / \mathrm{n})=\mathrm{E}(X) / \mathrm{n}=\mathrm{p}$
$\longrightarrow \mathrm{SD}(P)=\mathrm{SD}(X / \mathrm{n})=\mathrm{SD}(X) / \mathrm{n}=\sqrt{\mathrm{p}(1-\mathrm{p}) / \mathrm{n}}$

Continuous random variables

Suppose X is a continuous random variable.
Instead of a probability function, X has a probability density function (pdf), sometimes called just the density of X.
$\longrightarrow f(x) \geq 0$
$\longrightarrow \quad \int_{-\infty}^{\infty} f(x) d(x)=1$
\longrightarrow Areas under curve $=$ probabilities

Cumulative distr. function:

$$
\longrightarrow \quad \mathrm{F}(\mathrm{x})=\operatorname{Pr}(X \leq \mathrm{x}) \quad \longrightarrow
$$

Means and standard deviations

Expected value:

\longrightarrow Discrete RV: $\mathrm{E}(X)=\sum_{\mathrm{x}} \mathrm{xp}(\mathrm{x})$
\longrightarrow Continuous RV: $\mathrm{E}(X)=\int_{-\infty}^{\infty} \mathrm{xf}(\mathrm{x}) \mathrm{dx}$

Standard deviation:
\longrightarrow Discrete RV: $\operatorname{SD}(X)=\sqrt{\sum_{x}[\mathrm{x}-\mathrm{E}(\mathrm{X})]^{2} \mathrm{p}(\mathrm{x})}$
\longrightarrow Continuous RV: $\operatorname{SD}(X)=\sqrt{\int_{-\infty}^{\infty}[x-E(X)]^{2} f(x) d x}$

Uniform distribution

$X \sim \operatorname{Uniform}(\mathrm{a}, \mathrm{b})$
\longrightarrow Draw a number at random from the interval (a, b).

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{b-a} & \text { if } a<x<b \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\begin{aligned}
\longrightarrow \mathrm{E}(X) & =(\mathrm{a}+\mathrm{b}) / 2 \\
\longrightarrow \mathrm{SD}(X) & =(\mathrm{b}-\mathrm{a}) / \sqrt{12} \\
& \approx 0.29 \times(\mathrm{b}-\mathrm{a})
\end{aligned}
$$

Normal distribution

By far the most important distribution:
The normal distribution (also called the Gaussian distribution).

If $X \sim \mathbf{N}(\mu, \sigma)$, then the pdf of X is

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Note: $\mathrm{E}(X)=\mu$ and $\mathrm{SD}(X)=\sigma$.

Of great importance:
\longrightarrow If $X \sim \mathrm{~N}(\mu, \sigma)$ and $Z=(X-\mu) / \sigma$, then $Z \sim \mathrm{~N}(0,1)$.
This is the standard normal distribution.

Normal distribution

\longrightarrow Remember:
$\operatorname{Pr}(\mu-\sigma \leq X \leq \mu+\sigma) \approx 68 \%$ and $\operatorname{Pr}(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 95 \%$.

The normal CDF

Calculations with the normal curve in R

- Convert to a statement involving the cdf.
- Use the function pnorm ().
\longrightarrow Draw a picture!

Examples

Suppose the heights of adult males in the U.S. are approximately normal distributed, with mean $=69$ in and SD $=3$ in.
\longrightarrow What proportion of men are taller than $5^{\prime \prime} 7$ "?

$$
\begin{aligned}
& X \sim \mathrm{~N}(\mu=69, \sigma=3) \\
& Z=(X-69) / 3 \sim \mathrm{~N}(0,1) \\
& \operatorname{Pr}(X \geq 67)= \\
& \operatorname{Pr}(Z \geq(67-69) / 3)= \\
& \operatorname{Pr}(Z \geq-2 / 3)
\end{aligned}
$$

Use either of the following three:
$\longrightarrow \operatorname{pnorm}(67,69,3$, lower=FALSE)
$\longrightarrow 1$ - pnorm $(67,69,3)$
$\longrightarrow \operatorname{pnorm}(2 / 3)$

The answer: 75\%.

Another calculation

\longrightarrow What proportion of men are between $5^{\prime} 3^{\prime \prime}$ and 6^{\prime} ?

$\operatorname{Pr}(63 \leq X \leq 72)=$
$\operatorname{Pr}(-2 \leq Z \leq 1)$

Use either of the following:
$\longrightarrow \operatorname{pnorm}(72,69,3)-\operatorname{pnorm}(63,69,3)$
$\longrightarrow \operatorname{pnorm}(1)-\operatorname{pnorm}(-2)$

The answer: 82\%.

