Sampling Distributions

Example

Two strains of mice: A and B.
Measure cytokine IL10 (in males, all same age) after treatment.

\longrightarrow We're not interested in these particular mice, but in aspects of the distributions of IL10 values in the two strains.

Populations and samples

\longrightarrow We are interested in the distribution of measurements in the underlying (possibly hypothetical) population.

Examples: o Infinite number of mice from strain A; cytokine response to treatment.

- All T cells in a person; respond or not to an antigen.
- All possible samples from the Baltimore water supply; concentration of cryptospiridium.
- All possible samples of a particular type of cancer tissue; expression of a certain gene.
\longrightarrow We can't see the entire population (whether it is real or hypothetical), but we can see a random sample of the population (perhaps a set of independent, replicated measurements).

Parameters

We are interested in the population distribution or, in particular, certain numerical attributes of the population distribution, called parameters.

\longrightarrow Examples:

- mean
- median
- SD
- proportion = 1
- proportion > 40
- geometric mean
- 95th percentile

Parameters are usually assigned greek letters (like θ, μ, and σ).

Sample data

We make n independent measurements (or draw a random sample of size n). This gives $X_{1}, X_{2}, \ldots, X_{n}$ independent and identically distributed (iid), following the population distribution.
\longrightarrow Statistic:
A numerical summary (function) of the X 's. For example, the sample mean, sample SD, etc.
\longrightarrow Estimator:
A statistic, viewed as estimating some population parameter.

We write:
$\bar{X}=\hat{\mu}$ as an estimator of $\mu, S=\hat{\sigma}$ as an estimator of σ, \hat{p} as an estimator of $p, \hat{\theta}$ as an estimator of θ, \ldots

Parameters, estimators, estimates

μ - The population mean

- A parameter
- A fixed quantity
- Unknown, but what we want to know
\bar{X} - The sample mean
- An estimator of μ
- A function of the data (the X 's)
- A random quantity
$\bar{x} \quad$ - The observed sample mean
- An estimate of μ
- A particular realization of the estimator, \bar{X}
- A fixed quantity, but the result of a random process.

Estimators are random variables

Estimators have distributions, means, SDs, etc.

$3.8 \quad 8.0 \quad 9.913 .1 \quad 15.516 .622 .325 .431 .0 \quad 40.0 \longrightarrow 18.6$
$6.010 .613 .817 .120 .222 .522 .928 .633 .136 .7 \longrightarrow 21.2$
$\begin{array}{llllllllllllllll} & 9.1 & 9.0 & 9.5 & 12.2 & 13.3 & 20.5 & 30.3 & 31.6 & 34.6 \longrightarrow 19.0\end{array}$
$4.210 .311 .013 .916 .518 .218 .920 .428 .434 .4 \longrightarrow 17.6$
$8.415 .217 .117 .221 .223 .026 .728 .232 .8 \quad 38.0 \longrightarrow 22.8$

Sampling distribution

The sampling distribution depends on:

- The type of statistic
- The population distribution
- The sample size

Distribution of \bar{X}

Bias, SE, RMSE

Consider $\hat{\theta}$, an estimator of the parameter θ.
\longrightarrow Bias:
$\mathbf{E}(\hat{\theta}-\theta)=\mathbf{E}(\hat{\theta})-\theta$.
\longrightarrow Standard error (SE): $\quad \operatorname{SE}(\hat{\theta})=\operatorname{SD}(\hat{\theta})$.
$\longrightarrow \operatorname{RMS}$ error (RMSE): $\quad \sqrt{\mathrm{E}\left\{(\hat{\theta}-\theta)^{2}\right\}}=\sqrt{(\mathrm{bias})^{2}+(\mathrm{SE})^{2}}$.

The sample mean

Assume $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid with mean μ and $\operatorname{SD} \sigma$.
\longrightarrow Mean of $\bar{X}=\mathrm{E}(\bar{X})=\mu$.
\longrightarrow Bias $=\mathrm{E}(\bar{X})-\mu=0$.
$\longrightarrow \mathrm{SE}$ of $\bar{X}=\mathrm{SD}(\bar{X})=\sigma / \sqrt{\mathrm{n}}$.
\longrightarrow RMS error of $\bar{X}:$

$$
\sqrt{(\mathrm{bias})^{2}+(\mathrm{SE})^{2}}=\sigma / \sqrt{\mathrm{n}} .
$$

If the population is normally distributed

If $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid $\operatorname{Normal}(\mu, \sigma)$, then
$\longrightarrow \bar{X} \sim \operatorname{Normal}(\mu, \sigma / \sqrt{\mathrm{n}})$.

Example

Suppose $X_{1}, X_{2}, \ldots, X_{10}$ are iid $\operatorname{Normal(mean=10,SD=4)~}$
Then $\bar{X} \sim \operatorname{Normal}($ mean $=10, \mathrm{SD} \approx 1.26)$. Let $Z=(\bar{X}-10) / 1.26$. $\operatorname{Pr}(\bar{X}>12)$?

$\operatorname{Pr}(9.5<\bar{X}<10.5) ?$

$\operatorname{Pr}(|\bar{X}-10|>1) ?$

Central limit theorm

\longrightarrow If $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid with mean μ and $\mathrm{SD} \sigma$, and the sample size (n) is large, then

\bar{X} is approximately $\operatorname{Normal}(\mu, \sigma / \sqrt{n})$.

\longrightarrow How large is large?
It depends on the population distribution.
(But, generally, not too large.)

Example 1

Distribution of \bar{X}

Example 2

Example 2 (rescaled)

Example 3

Distribution of \bar{X}

The sample SD

\longrightarrow Why use $(\mathrm{n}-1)$ in the sample SD?

$$
S=\sqrt{\frac{\sum\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

\longrightarrow If $\left\{X_{i}\right\}$ are iid with mean μ and $\operatorname{SD} \sigma$, then

- $\mathrm{E}\left(\mathrm{S}^{2}\right)=\sigma^{2}$
- $\mathbf{E}\left\{\frac{\mathrm{n}-1}{\mathrm{n}} \mathrm{S}^{2}\right\}=\frac{\mathrm{n}-1}{\mathrm{n}} \sigma^{2}<\sigma^{2}$
\longrightarrow In other words:
- $\operatorname{Bias}\left(\mathrm{S}^{2}\right)=0$
- Bias $\left(\frac{n-1}{n} S^{2}\right)=\frac{n-1}{n} \sigma^{2}-\sigma^{2}=-\frac{1}{n} \sigma^{2}$

The distribution of the sample SD

\longrightarrow If $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ are iid $\operatorname{Normal}(\mu, \sigma)$, then the sample SD S satisfies

$$
(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}
$$

(When the X_{i} are not normally distributed, this is not true.)

Example

A non-normal example

Distribution of sample SD

