Summarizing and Presenting Data

Summary statistics

Location / Center

- mean (average)
- median
- mode
- geometric mean
- harmonic mean

Scale

- standard deviation (SD)
- inter-quartile range (IQR)
- range

Other

- quantile
- quartile
- quintile

Summary statistics

$$
\begin{aligned}
\text { mean } & =\frac{1}{n} \sum_{i=1}^{n} x_{i}=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / n \\
\text { geometric mean } & =\sqrt[n]{\prod_{i=1}^{n} x_{i}}=\exp \left\{\frac{1}{n} \sum_{i=1}^{n} \log x_{i}\right\} \\
\text { harmonic mean } & =1 /\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1 / x_{i}\right)\right\}
\end{aligned}
$$

\longrightarrow Note: these are all sample means.

Measures of location / center

Measures of location / center

Skewed data

Measures of location / center

- The mean is sensitive to outliers.
- The median is resistant to outliers.
- The geometric mean is used when a logarithmic transformation is appropriate (for example, when the distribution has a long right tail).
- The harmonic mean may be used when a reciprocal transformation is appropriate (very seldom).
- Forget about the mode.

A key point

The different possible measures of the "center" of the distribution are all allowable.

You should consider the following though:
\longrightarrow Which is the best measure of the "typical" value in your particular setting?
\longrightarrow Be sure to make clear which "average" you use.

Measures of location / center

Standard deviation (SD)

Sample variance $=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=s^{2}$

$$
\begin{aligned}
\text { Sample SD } & =\sqrt{s^{2}}=s \\
& =\mathrm{RMS} \text { (distance from average) } \\
& =\text { "typical" distance from the average } \\
& =\text { sort of like ave }\left\{\left|x_{i}-\bar{x}\right|\right\}
\end{aligned}
$$

$\longrightarrow \quad$ Remember: $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Standard deviation (SD)

Standard deviation (SD)

Dotplots

- Few data points per group.
- Possibly many groups.

Histograms

Symmetric distribution

Skewed distribution

- Many data points per group.
- Few groups.
- Area of the rectangle is proportional to the number of data points in the interval.
- Typically $2 \sqrt{n}$ bins is a good choice.

Boxplots

- Many data points.
- Possibly many groups.
- Displays the minimum, lower quartile, median, upper quartile, and the maximum.

Skyscraper-with-antenna plots

Skyscraper-with-antenna plots

Skyscraper-with-antenna plots

Skyscraper-with-antenna plots

