
Survival Analysis

Survival analysis

Survival analysis: Study of durations between events

−→ Outcome:
Time until an event occurs, i.e. survival time or failure time.
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Examples: Age at death, age at first disease diagnosis, waiting time to pregnancy,
duration between treatment and death, . . .



The censoring problem in survival analysis

−→ Censoring:
Incomplete observations of the survival time.

−→ Right censoring:
Some individuals may not be observed for the full time to failure, because of
loss to follow-up, drop out, termination of the study, . . .

Study start Study endtime

0 100 200 300 400

T > 400

T = 310

T > 150

T > 240

Basic goals of survival analysis

1. To estimate and interpret survival characteristics
−→ Kaplan-Meier plots

2. To compare survival in different groups
−→ Log-rank test

3. To assess the relationship of explanatory variables to survival
−→ Cox regression model



Survival function

Survival function: S(t) = P(T > t)

−→ S(t) describes the probability of surviving to time t, or what
fraction of subjects survive (on average) to time t.

Properties:

◦ S(t) is a smooth function in t.

◦ S(0) = 1 and S(∞) = 0.

◦ S(t) is a decreasing function in t.

◦ Describes cumulative survival characteristics.
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Example

> library(survival)
> library(MASS)
> attach(gehan)

> str(gehan)
‘data.frame’: 42 obs. of 4 variables:
$ pair : int 1 1 2 2 3 3 4 4 5 5 ...
$ time : int 1 10 22 7 3 32 12 23 8 22 ...
$ cens : int 1 1 1 1 1 0 1 1 1 1 ...
$ treat: Factor w/ 2 levels "6-MP","control": 2 1 2 1 2 1 2 1 2

> Surv(time,cens)
[1] 1 10 22 7 3 32+ 12 23 8 22 17
[12] 6 2 16 11 34+ 8 32+ 12 25+ 2 11+
[23] 5 20+ 4 19+ 15 6 8 17+ 23 35+ 5
[34] 6 11 13 4 9+ 1 6+ 8 10+



Kaplan-Meier estimate

The Kaplan-Meier or product-limit estimate Ŝ(t) is an estimate of
S(t) from a finite sample.

Suppose that there are observations on n individuals and assume
that there are k (k ≤ n) distinct times t1, . . . , tk at which deaths
occur. Let dj be the number of deaths at time tj. Define

Ŝ(t) =
∏

j: tj<t

nj − dj
nj

,

where nj is the number of individuals at risk (e.g., the individuals
alive and uncensored) at time tj.

−→ If there are no censored observations, this reduces to

Ŝ(t) = (number of observations ≥ t) / n.
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> gehan.surv = survfit(Surv(time, cens) ˜ treat, data = gehan)
> plot(gehan.surv)



Some facts about the Kaplan-Meier estimate

−→ The Kaplan-Meier method is non-parametric. The survival
curve is step-wise, not smooth. Any jumping point is a fail-
ure time point. The jump size is proportional to the number
of deaths at a failure time point. Note that having a small
sample means having big steps!

−→ If the largest observed study time tk corresponds to a death
time, then the estimated Kaplan-Meier survival curve is 0 be-
yond tk. If the largest observed study time is censored, then
the survival curve is not 0 beyond tk.

−→ Ŝ(t) is a decreasing function in t with Ŝ(0) = 1. Further Ŝ(t)
converges to S(t) as n → ∞.

Comparison of two survival distributions

We test H0: S1(t) = S2(t) versus Ha: S1(t) ̸= S2(t)

−→ The main idea behind the two-sample log-rank test: if sur-
vival is unrelated to group effect, then at each time point,
roughly the same proportion in each group will fail.

The test is based on χ2-types of statistics:

Q =
D∑

i=1
(O1i − E1i)

where the summation is over the pooled failure time points among the 2 groups.
O1i and E1i are the observed number of death for group 1 at the ith pooled failure
time. The log-rank test statistic under H0 is

logRT =
Q2

Var(Q) ∼ χ2
1



Example

> survdiff(Surv(time,cens)˜treat,data=gehan)

Call:
survdiff(formula = Surv(time, cens) ˜ treat, data = gehan)

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V
treat=6-MP 21 9 19.3 5.46 16.8
treat=control 21 21 10.7 9.77 16.8

Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05

Comparison of survival distributions

The log-rank test can be extended to k > 2 groups. Under H0 the
null distribution of the test statistic is

logRT ∼ χ2
k – 1

However, these test also have some shortcomings:

◦ The tests have a bad performance when the two survival func-
tions are overcrossing.

◦ The test can only be used for comparing groups defined by sin-
gle categorical covariates.

◦ They are not very useful to quantify the differences.



Hazard function

The hazard function is defined as
h(t) = – d

dt log(S(t))

In other words, it is the slope of – log(S(t)). You can think of it as
the propensity for failure for an individual at each time point, e.g.
the instantaneous risk of failure.

Properties:

◦ Closely related to the incidence rate.

◦ Not a probability!

◦ May increase or decrease or both.

◦ Describes instantaneous survival characteristics.

Hazard functions

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

time

S(
t)

Exponential

0 20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

0.30

time

h(
t)

Exponential

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

time

S(
t)

Weibull

0 20 40 60 80 100

0.0

0.5

1.0

1.5

2.0

time

h(
t)

Weibull



Cox regression model

−→ Goal:
To assess the relationship of explanatory variables (e.g. sex,
age, treatment type, etc) to survival time.

−→ One idea (Sir David Cox):
Use a proportional hazards regression model, defined as

h(t|x) = h0(t)e
βx

Here, h0(t) is a baseline hazard function, and β is a regres-
sion coefficient.

Cox regression model

What does h(t|x) = h0(t)eβx mean?

For example, assume we a treatment group (x = 1) and a control
group (x = 0).

−→ In the control group, the hazard function is
h(t|x = 0) = h0(t)e

β×0 = h0(t)

−→ In the treatment group, the hazard function is
h(t|x = 1) = h0(t)e

β×1 = h0(t)e
β

−→ The relative risk for treatment versus control group is

RR =
h(t|x = 1)

h(t|x = 0)
= eβ



Cox regression model

−→ Interpretation of the parameters:

β > 0 RR > 1 and h(t|x = 1) > h(t|x = 0)

β = 0 RR = 1 and h(t|x = 1) = h(t|x = 0)

β < 0 RR < 1 and h(t|x = 1) < h(t|x = 0)

−→ Hypothesis of interest:

H0 : β = 0 (no treatment effect)
Ha : β ̸= 0 (treatment influences survival)

Example

> gehan.cox = coxph(Surv(time, cens) ˜ treat, gehan)
> summary(gehan.cox)

Call:
coxph(formula = Surv(time, cens) ˜ treat, data = gehan)

n= 42
coef exp(coef) se(coef) z p

treatcontrol 1.57 4.82 0.412 3.81 0.00014

exp(coef) exp(-coef) lower .95 upper .95
treatcontrol 4.82 0.208 2.15 10.8



Another example

> leuk.cox = coxph(Surv(time)˜ ag + log(wbc), data = leuk)
> summary(leuk.cox)

Call:
coxph(formula = Surv(time) ˜ ag + log(wbc), data = leuk)

n= 33
coef exp(coef) se(coef) z p

agpresent -1.069 0.343 0.429 -2.49 0.0130
log(wbc) 0.368 1.444 0.136 2.70 0.0069

exp(coef) exp(-coef) lower .95 upper .95
agpresent 0.343 2.913 0.148 0.796
log(wbc) 1.444 0.692 1.106 1.886


