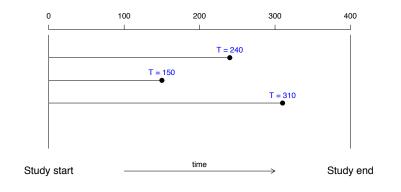
Survival Analysis

Survival analysis

Survival analysis: Study of durations between events

→ Outcome:

Time until an event occurs, i.e. *survival time* or *failure time*.



Examples: Age at death, age at first disease diagnosis, waiting time to pregnancy, duration between treatment and death, ...

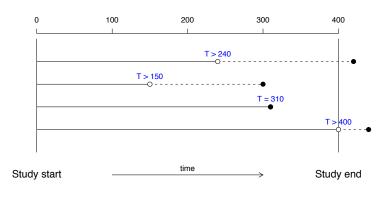
The censoring problem in survival analysis

\rightarrow Censoring:

Incomplete observations of the survival time.

\rightarrow Right censoring:

Some individuals may not be observed for the full time to failure, because of loss to follow-up, drop out, termination of the study, ...



Basic goals of survival analysis

1. To estimate and interpret survival characteristics

- \longrightarrow Kaplan-Meier plots
- 2. To compare survival in different groups
 - \longrightarrow Log-rank test

3. To assess the relationship of explanatory variables to survival

 \longrightarrow Cox regression model

Survival function

Survival function: S(t) = P(T > t)

→ S(t) describes the probability of surviving to time t, or what fraction of subjects survive (on average) to time t.

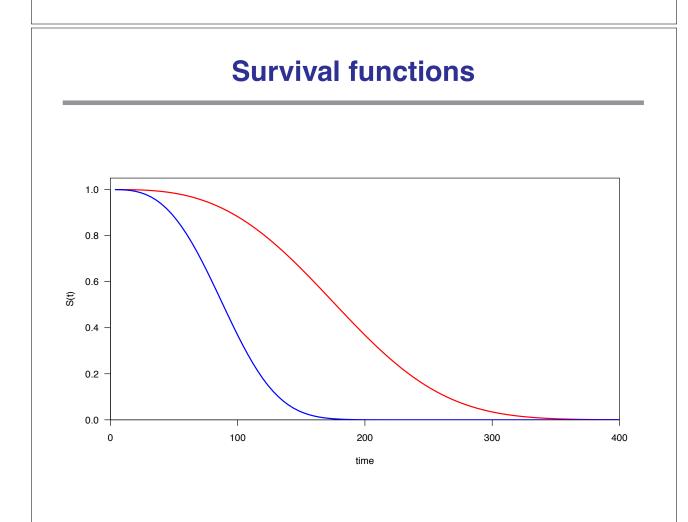
Properties:

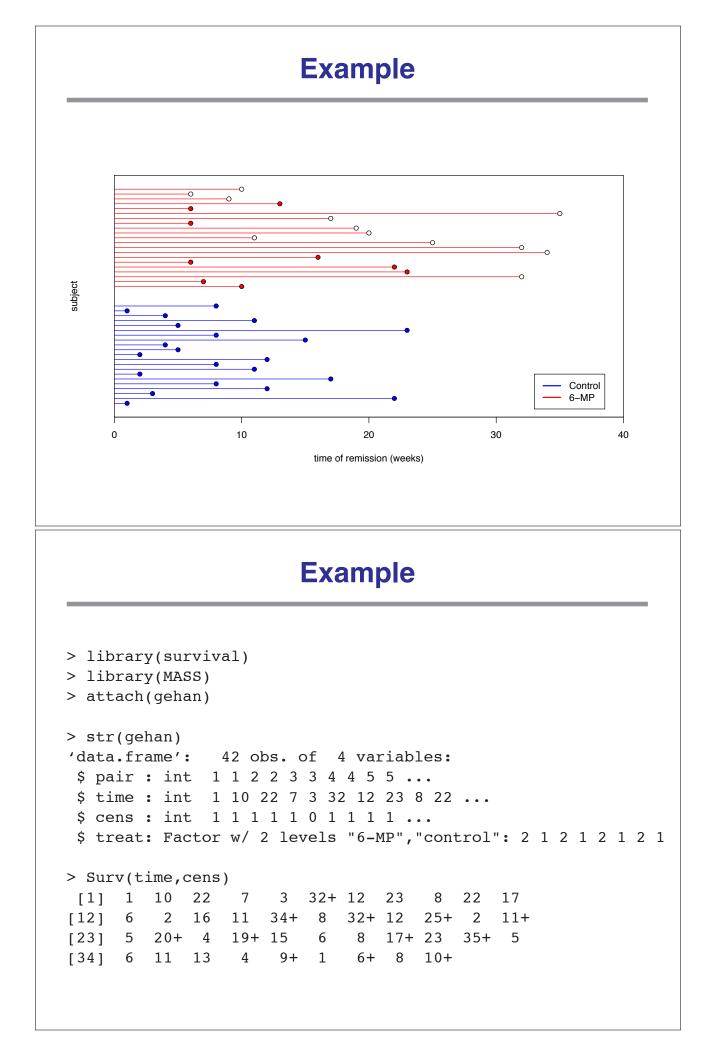
 \circ S(t) is a smooth function in t.

 \circ S(0) = 1 and S(∞) = 0.

 \circ S(t) is a decreasing function in t.

• Describes *cumulative* survival characteristics.





Kaplan-Meier estimate

The Kaplan-Meier or product-limit estimate $\hat{S}(t)$ is an estimate of S(t) from a finite sample.

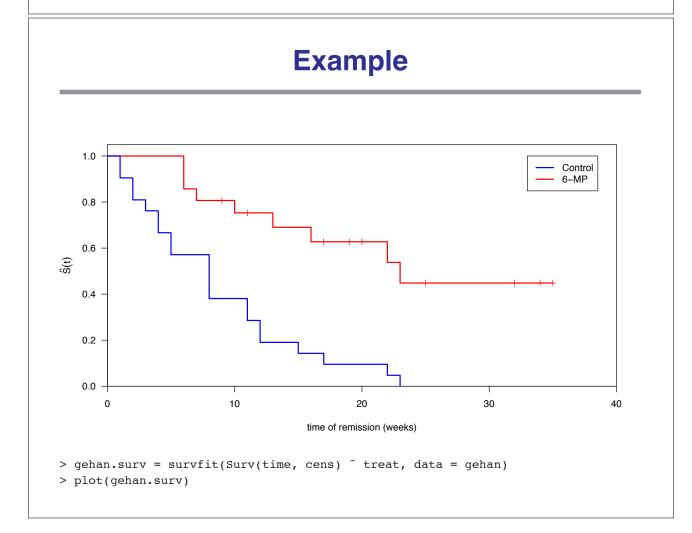
Suppose that there are observations on n individuals and assume that there are k (k \leq n) distinct times t_1,\ldots,t_k at which deaths occur. Let d_j be the number of deaths at time t_j . Define

$$\hat{\mathbf{S}}(t) = \prod_{j: t_j < t} \frac{\mathbf{n}_j - \mathbf{d}_j}{\mathbf{n}_j},$$

where n_j is the number of individuals at risk (e.g., the individuals alive and uncensored) at time t_j .

 \rightarrow If there are no censored observations, this reduces to

 $\hat{S}(t) = (number of observations \ge t) / n.$



Some facts about the Kaplan-Meier estimate

- → The Kaplan-Meier method is *non-parametric*. The survival curve is step-wise, not smooth. Any jumping point is a failure time point. The jump size is proportional to the number of deaths at a failure time point. Note that having a small sample means having big steps!
- \rightarrow If the largest observed study time t_k corresponds to a death time, then the estimated Kaplan-Meier survival curve is 0 beyond t_k. If the largest observed study time is censored, then the survival curve is not 0 beyond t_k.
- \rightarrow $\hat{S}(t)$ is a decreasing function in t with $\hat{S}(0) = 1$. Further $\hat{S}(t)$ converges to S(t) as $n \rightarrow \infty$.

Comparison of two survival distributions

We test H_0 : $S_1(t) = S_2(t)$ versus H_a : $S_1(t) \neq S_2(t)$

→ The main idea behind the two-sample log-rank test: if survival is unrelated to group effect, then at each time point, roughly the same proportion in each group will fail.

The test is based on χ^2 -types of statistics:

$$\mathsf{Q} = \sum_{i=1}^{\mathsf{D}} (\mathsf{O}_{1i} - \mathsf{E}_{1i})$$

where the summation is over the pooled failure time points among the 2 groups. O_{1i} and E_{1i} are the observed number of death for group 1 at the ith pooled failure time. The log-rank test statistic under H_0 is

$$\text{logRT} = \frac{\text{Q}^2}{\text{Var(Q)}} \sim \chi_1^2$$

Example

```
> survdiff(Surv(time,cens)<sup>~</sup>treat,data=gehan)
Call:
survdiff(formula = Surv(time, cens) ~ treat, data = gehan)
               N Observed Expected (O-E)^{2/E} (O-E)^{2/V}
treat=6-MP
               21
                         9
                                19.3
                                           5.46
                                                     16.8
treat=control 21
                        21
                                10.7
                                           9.77
                                                     16.8
 Chisq= 16.8 on 1 degrees of freedom, p= 4.17e-05
```

Comparison of survival distributions

The log-rank test can be extended to k>2 groups. Under H_0 the null distribution of the test statistic is

```
\log RT \sim \chi^2_{k-1}
```

However, these test also have some shortcomings:

- The tests have a bad performance when the two survival functions are overcrossing.
- The test can only be used for comparing groups defined by single categorical covariates.
- They are not very useful to quantify the differences.

Hazard function

The hazard function is defined as

 $h(t) = -\frac{d}{dt} \log(S(t))$

In other words, it is the slope of $-\log(S(t))$. You can think of it as the propensity for failure for an individual at each time point, e.g. the instantaneous risk of failure.

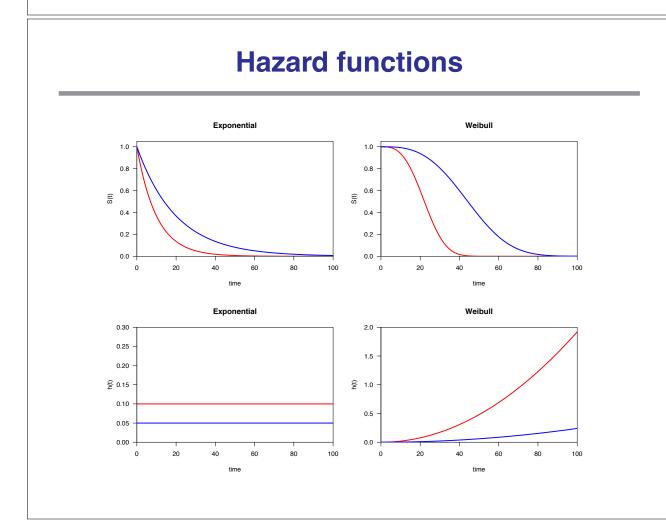
Properties:

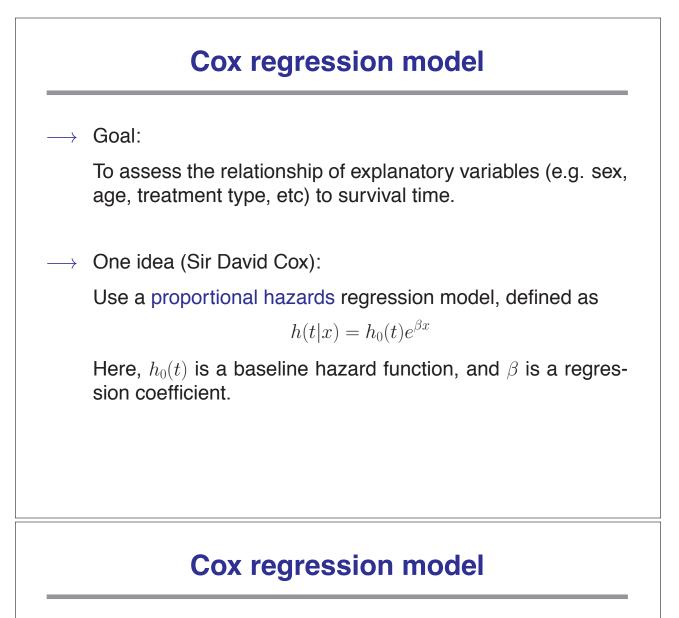
• Closely related to the incidence rate.

• Not a probability!

• May increase or decrease or both.

• Describes instantaneous survival characteristics.





What does $h(t|x) = h_0(t)e^{\beta x}$ mean?

For example, assume we a treatment group (x = 1) and a control group (x = 0).

 \longrightarrow In the control group, the hazard function is

$$h(t|x=0) = h_0(t)e^{\beta \times 0} = h_0(t)$$

 \longrightarrow In the treatment group, the hazard function is

$$h(t|x=1) = h_0(t)e^{\beta \times 1} = h_0(t)e^{\beta}$$

 \rightarrow The relative risk for treatment versus control group is

$$\mathsf{RR} = \frac{h(t|x=1)}{h(t|x=0)} = e^{\beta}$$

Cox regression model

 \longrightarrow Interpretation of the parameters:

$\beta > 0$	RR > 1 and $h(t x = 1) > h(t x = 0)$
$\beta = 0$	RR = 1 and $h(t x = 1) = h(t x = 0)$
eta < 0	RR < 1 and $h(t x = 1) < h(t x = 0)$

 \longrightarrow Hypothesis of interest:

 $H_0: \beta = 0$ (no treatment effect)

 $H_a: \beta \neq 0$ (treatment influences survival)

Example

Another example

```
> leuk.cox = coxph(Surv(time) ag + log(wbc), data = leuk)
> summary(leuk.cox)
Call:
coxph(formula = Surv(time) ~ ag + log(wbc), data = leuk)
 n= 33
         coef exp(coef) se(coef) z p
agpresent -1.069 0.343 0.429 -2.49 0.0130
log(wbc) 0.368 1.444 0.136 2.70 0.0069
        exp(coef) exp(-coef) lower .95 upper .95
          0.343
                     2.913
                               0.148
                                     0.796
agpresent
log(wbc)
            1.444 0.692
                               1.106 1.886
```