Practice Problems (Maximum Likelihood Estimation)

- Suppose we randomly sample 100 mosquitoes at a study site, and find that 44 carry a parasite. Derive the maximum likelihood estimate for the proportion of infected mosquitoes in the population.

Solution:

The distribution function for a Binomial (n, p) is $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$. In our case, $n=100$, and we observe $x=44$. The likelihood is a function of the unknown parameter p, given the data. Hence

$$
L(p)=\binom{100}{44} \times p^{44} \times(1-p)^{100-44}=\binom{100}{44} \times p^{44} \times(1-p)^{56}
$$

The log likelihood is

$$
l(p)=\log \left(\binom{100}{44} \times p^{44} \times(1-p)^{56}\right)=\log \binom{100}{44}+44 \log (p)+56 \log (1-p)
$$

To find the maximum of the log-likelihood, we take the first derivative of $l(p)$ with respect to p :

$$
l^{\prime}(p)=0+44 \frac{1}{p}+56 \frac{1}{1-p}(-1)=\frac{44}{p}-\frac{56}{1-p}
$$

Setting the first derivative equal to zero yields

$$
0=\frac{44}{\hat{p}}-\frac{56}{1-\hat{p}} \quad \Longleftrightarrow 0=44(1-\hat{p})-56 \hat{p} \quad \Longleftrightarrow 0=44-100 \hat{p} \quad \Longleftrightarrow \quad \hat{p}=\frac{44}{100}
$$

Therefore, the maximum likelihood estimate for the proportion of infected mosquitoes in the population is 0.44 .

- Suppose we take 3 random (independent) draws from a Poisson distribution, and obtain the numbers $18,16,23$. Derive the maximum likelihood estimate for the Poisson parameter λ.

Solution:

The distribution function for a Poisson (λ) is $P(X=x)=\exp (-\lambda) \times \lambda^{x} / x!$. Since we have three independent draws, the probability of observing those data is

$$
\begin{aligned}
& P\left(X_{1}=18 \text { and } X_{2}=16 \text { and } X_{1}=23\right) \\
= & P(X=18) \times P(X=16) \times P(X=23) \\
= & \left(\exp (-\lambda) \times \lambda^{18} / 18!\right) \times\left(\exp (-\lambda) \times \lambda^{16} / 16!\right) \times\left(\exp (-\lambda) \times \lambda^{23} / 23!\right) \\
= & \exp (-\lambda)^{3} \times \lambda^{18+16+23} /(18!\times 16!\times 23!) \\
= & \exp (-\lambda)^{3} \times \lambda^{57} /(\text { some really large constant })
\end{aligned}
$$

This is the likelihood function, and the only unknown quantity is λ. The log likelihood is

$$
\begin{aligned}
l(\lambda) & =\log \left\{\exp (-\lambda)^{3} \times \lambda^{57} /(\text { some really large constant })\right\} \\
& =-3 \lambda+57 \log (\lambda)-\log (\text { some really large constant })
\end{aligned}
$$

To find the maximum of the log-likelihood, we take the first derivative of $l(\lambda)$ with respect to λ :

$$
l^{\prime}(\lambda)=-3+57 / \lambda
$$

Setting the first derivative equal to zero yields

$$
0=-3+57 / \hat{\lambda} \quad \Longleftrightarrow \quad \hat{\lambda}=\frac{57}{3}=19 .
$$

Therefore, the maximum likelihood estimate for the Poisson parameter λ is 19 .

