Practice Problems (Sample Size and Power)

- Assume that we have n independent measurements from a Normal distribution with unknown mean Δ and standard deviation 1, i.e. $X_{1}, \ldots, X_{n} \sim N(\Delta, \sigma=1)$.

1. What is the distribution of \bar{X} ?
2. To test for $H_{0}: \Delta=0$ versus $H_{a}: \Delta>0$, what is your test statistic, and what is its distribution if H_{0} was true?
3. For which values of the test statistic do you reject the null hypothesis?
4. If we want to have 80% power to detect a mean of $\Delta=0.5$, how large must n be?

Solution:

1. $\bar{X} \sim N(\Delta, 1 / \sqrt{n})$
2. $Z=\bar{X} /(1 / \sqrt{n})=\sqrt{n} \times \bar{X} \sim N(0,1)$ under H_{0}. Note that when $\Delta>0, Z \sim N(\sqrt{n} \times \Delta, 1)$.
3. Since we have a one-sided test with the alternative $H_{a}: \Delta>0$, we reject the null hypothesis only for large positive values. If we want to control the type I error rate at 5%, we use 1.64 (qnorm (0.95)) as cut-off. So we reject the null hypothesis if our test statistic is larger than 1.64.
4. The test statistic Z is $\sqrt{n} \times \bar{X}$, and its distribution is $N(\sqrt{n} \times \Delta, 1)$. We reject the null hypothesis if $Z>1.64$. Therefore, the power is

$$
\operatorname{Pr}(Z>1.64)=\operatorname{Pr}\{(\bar{X}-\sqrt{n} \times \Delta)>1.64-\sqrt{n} \times \Delta\}=\operatorname{Pr}\{\tilde{Z}>1.64-\Delta \sqrt{n})\}
$$

with $\tilde{Z} \sim N(0,1)$ under H_{a}. We want the power to be 80%. When taking a draw from a $N(0,1)$, we find that the chance of getting a value larger than -0.84 is equal to 80% (qnorm(0.2) or qnorm (0.8 , lower=FALSE)). Therefore, to have 80% power to detect a mean of $\Delta=0.5$, it follows from $\operatorname{Pr}(Z>-0.84)=0.80$ that

$$
1.64-0.5 \sqrt{n}=-0.84 \Longleftrightarrow n=(2 \times(1.64+0.84))^{2}=24.6
$$

Hence we need at least 25 samples. If you type

```
> power.t.test(delta=0.5,power=0.8,sd=1,alternative="one.sided",
    type="one.sample")
```

in R , the answer is 26.2 . i. e. that 27 samples are needed. This is because R assumes that $\sigma=1$ is the true but unknown standard deviation, and thus, has to be estimated from the data. In other words, it uses a t-distribution for the sample size calculations, instead of the normal distribution, and that's why the sample size needed is slightly larger. The price for not knowing the standard deviation is 2 extra samples!

