# A Handbook of Statistical Analyses Using $\mathbf{R}$ 

Brian S. Everitt and Torsten Hothorn


## CHAPTER 13

## Principal Component Analysis: The Olympic Heptathlon

### 13.1 Introduction

### 13.2 Principal Component Analysis

### 13.3 Analysis Using R

To begin it will help to score all the seven events in the same direction, so that 'large' values are 'good'. We will recode the running events to achieve this;

```
R> data("heptathlon", package = "HSAUR")
R> heptathlon$hurdles <- max(heptathlon$hurdles) -
+ heptathlon$hurdles
R> heptathlon$run200m <- max(heptathlon$run200m) -
+ heptathlon$run200m
R> heptathlon$run800m <- max(heptathlon$run800m) -
+ heptathlon$run800m
```

Figure ${ }^{\sim} 13.1$ shows a scatterplot matrix of the results from the 25 competitors on the seven events. We see that most pairs of events are positively correlated to a greater or lesser degree. The exceptions all involve the javelin event - this is the only really 'technical' event and it is clear that training to become successful in the other six 'power'-based events makes this event difficult for the majority of the competitors. We can examine the numerical values of the correlations by applying the cor function

```
R> round(cor(heptathlon[,-score]), 2)
```

|  | hurdles | highjump | shot | run200m | longjump | javelin | run 800 m |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| hurdles | 1.00 | 0.81 | 0.65 | 0.77 | 0.91 | 0.01 | 0.78 |
| highjump | 0.81 | 1.00 | 0.44 | 0.49 | 0.78 | 0.00 | 0.59 |
| shot | 0.65 | 0.44 | 1.00 | 0.68 | 0.74 | 0.27 | 0.42 |
| run200m | 0.77 | 0.49 | 0.68 | 1.00 | 0.82 | 0.33 | 0.62 |
| longjump | 0.91 | 0.78 | 0.74 | 0.82 | 1.00 | 0.07 | 0.70 |
| javelin | 0.01 | 0.00 | 0.27 | 0.33 | 0.07 | 1.00 | -0.02 |
| run800m | 0.78 | 0.59 | 0.42 | 0.62 | 0.70 | -0.02 | 1.00 |

This correlation matrix demonstrates again the points made earlier.
A principal component analysis of the data can be applied using the prcomp function. The result is a list containing the coefficients defining each component (sometimes referred to as loadings), the principal component scores, etc. The required code is (omitting the score variable)

R> score <- which(colnames(heptathlon) == "score")
R> plot(heptathlon[,-score])


Figure 13.1 Scatterplot matrix for the heptathlon data.

```
R> heptathlon_pca <- prcomp(heptathlon[, -score], scale = TRUE)
R> print(heptathlon_pca)
Standard deviations:
[1] 2.1119364 1.0928497 0.7218131 0.6761411 0.4952441 0.2701029
[7] 0.2213617
Rotation:
\begin{tabular}{lrrrr} 
& \(P C 1\) & \(P C 2\) & \(P C 3\) & \(P C 4\) \\
hurdles & -0.4528710 & 0.15792058 & -0.04514996 & 0.02653873 \\
high jump & -0.3771992 & 0.24807386 & -0.36777902 & 0.67999172 \\
shot & -0.3630725 & -0.28940743 & 0.67618919 & 0.12431725 \\
run200m & -0.4078950 & -0.26038545 & 0.08359211 & -0.36106580 \\
longjump & -0.4562318 & 0.05587394 & 0.13931653 & 0.11129249
\end{tabular}
```

```
javelin -0.0754090 -0.84169212 -0.47156016 0.12079924
run800m -0.3749594 0.22448984 -0.39585671 -0.60341130
    PC5 PC6 PC7
hurdles -0.09494792 -0.78334101 0.38024707
highjump 0.01879888 0.09939981 -0.43393114
shot 0.51165201 -0.05085983-0.21762491
run200m -0.64983404 0.02495639-0.45338483
longjump -0.18429810 0.59020972 0.61206388
javelin 0.13510669 -0.02724076 0.17294667
run800m 0.50432116 0.15555520 -0.09830963
```

The summary method can be used for further inspection of the details:

```
R> summary(heptathlon_pca)
```

| Importance of components: | PC1 | $P C 2$ | $P C 3$ | $P C 4$ | $P C 5$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
|  | 2.1119 | 1.0928 | 0.72181 | 0.67614 | 0.49524 |
| Standard deviation | 2.6372 | 0.1706 | 0.07443 | 0.06531 | 0.03504 |
| Proportion of Variance | 0.637 |  |  |  |  |
| Cumulative Proportion | 0.6372 | 0.8078 | 0.88223 | 0.94754 | 0.98258 |
|  | $P C 6$ | $P C 7$ |  |  |  |
| Standard deviation | 0.27010 | 0.2214 |  |  |  |
| Proportion of Variance | 0.01042 | 0.0070 |  |  |  |
| Cumulative Proportion | 0.99300 | 1.0000 |  |  |  |

The linear combination for the first principal component is

```
R> a1 <- heptathlon_pca$rotation[,1]
```

R> a1

| hurdles | highjump | shot | run200m | longjump |
| ---: | ---: | ---: | ---: | ---: |
| -0.4528710 | -0.3771992 | -0.3630725 | -0.4078950 | -0.4562318 |
| javelin | run 800 m |  |  |  |
| -0.0754090 | -0.3749594 |  |  |  |

We see that the 200 m and long jump competitions receive the highest weight but the javelin result is less important. For computing the first principal component, the data need to be rescaled appropriately. The center and the scaling used by prcomp internally can be extracted from the heptathlon_pca via

```
R> center <- heptathlon_pca$center
R> scale <- heptathlon_pca$scale
```

Now, we can apply the scale function to the data and multiply with the loadings matrix in order to compute the first principal component score for each competitor

```
R> hm <- as.matrix(heptathlon[,-score])
R> drop(scale(hm, center = center, scale = scale) %*%
+ heptathlon_pca$rotation[,1])
\begin{tabular}{rrrr} 
Joyner-Kersee (USA) & John (GDR) & Behmer (GDR) \\
-4.121447626 & -2.882185935 & -2.649633766 \\
Sablovskaite (URS) & Choubenkova (URS) & Schulz (GDR) \\
-1.343351210 & -1.359025696 & -1.043847471
\end{tabular}
```

$$
\begin{array}{r}
\text { Fleming (AUS) } \\
\text {-1.100385639 } \\
\text { Bouraga (URS) } \\
\text {-0.759819024 } \\
\text { Scheider (SWI) } \\
0.015461226 \\
\text { Yuping (CHN) } \\
\text {-0.137225440 } \\
\text { Mulliner (GB) } \\
\text { 1.125481833 } \\
\text { Geremias (BRA) } \\
\text { 2.014029620 } \\
\text { Launa (PNG) } \\
6.270021972
\end{array}
$$

$$
\begin{array}{rr}
\text { Lajbnerova (CZE) } \\
-0.530250689 \\
\text { Dimitrova (BUL) } \\
-1.186453832 \\
\text { Ruotsalainen (FIN) } \\
0.090747709 \\
\text { Brown (USA) } \\
0.519252646 \\
\text { Kytola (FIN) } \\
1.447055499 \\
\text { Jeong-Mi (KOR) } \\
2.970118607
\end{array}
$$

or, more conveniently, by extracting the first from all precomputed principal components
R> predict(heptathlon_pca) [,1]

| Joyner-Kersee (USA) | John (GDR) | Behmer (GDR) |
| ---: | ---: | ---: | ---: |
| -4.121447626 | -2.882185935 | -2.649633766 |
| Sablovskaite (URS) | Choubenkova (URS) | Schulz (GDR) |
| -1.343351210 | -1.359025696 | -1.043847471 |
| Fleming (AUS) | Greiner (USA) | Lajbnerova (CZE) |
| -1.100385639 | -0.923173639 | -0.530250689 |
| Bouraga (URS) | Wijnsma (HOL) | Dimitrova (BUL) |
| -0.759819024 | -0.556268302 | -1.186453832 |
| Scheider (SWI) | Braun (FRG) | Ruotsalainen (FIN) |
| 0.015461226 | 0.003774223 | 0.090747709 |
| Yuping (CHN) | Hagger (GB) | Brown (USA) |
| -0.137225440 | 0.171128651 | 0.519252646 |
| Mulliner (GB) | Hautenauve (BEL) | Kytola (FIN) |
| l.125481833 | 1.085697646 | 1.447055499 |
| Geremias (BRA) | Hui-Ing (TAI) | Jeong-Mi (KOR) |
| 2.014029620 | 2.880298635 | 2.970118607 |
| Launa (PNG) |  |  |

The first two components account for $81 \%$ of the variance. A barplot of each component's variance (see Figure ${ }^{\sim} 13.2$ ) shows how the first two components dominate. A plot of the data in the space of the first two principal components, with the points labelled by the name of the corresponding competitor can be produced as shown with Figure $\sim 13.3$. In addition, the first two loadings for the events are given in a second coordinate system, also illustrating the special role of the javelin event. This graphical representation is known as biplot (?).

The correlation between the score given to each athlete by the standard scoring system used for the heptathlon and the first principal component score can be found from
R> cor(heptathlon\$score, heptathlon_pca\$x[,1])

## heptathlon_pca



Figure 13.2 Barplot of the variances explained by the principal components.

## [1] -0.9910978

This implies that the first principal component is in good agreement with the score assigned to the athletes by official Olympic rules; a scatterplot of the official score and the first principal component is given in Figure ${ }^{\sim}$ 13.4.

R> biplot(heptathlon_pca, col = c("gray", "black"))


Figure 13.3 Biplot of the (scaled) first two principal components.

R> plot(heptathlon\$score, heptathlon_pca\$x[,1])


Figure 13.4 Scatterplot of the score assigned to each athlete in 1988 and the first principal component.

