# R command library(tree) # data frame bwt.dat <- read.table("lbw.dat",header=T) bwt.dat$smoke <- factor(bwt.dat$smoke,levels=0:1,labels=c("no","yes")) bwt.dat$race <- factor(bwt.dat$race,levels=1:3, labels=c("white","black","other")) bwt.dat$ht <- factor(bwt.dat$ht,levels=0:1,labels=c("absent","present")) bwt.dat$ui <- factor(bwt.dat$ui,levels=0:1,labels=c("absent","present")) # grow the tree bwt.tree <- tree(bwt~age+lwt+race+smoke+ptl+ht+ui+ftv,data=bwt.dat) # or bwt.tree <- tree(bwt~.-low,data=bwt.dat) # grow a tree using only race and smoke as predictors bwt.tree2 <- tree(bwt~race+smoke,data=bwt.dat) # tree info summary(bwt.tree) print(bwt.tree) # plot the tree plot(bwt.tree) text(bwt.tree) # Splus command post.tree(bwt.tree) # two choices how to plot the tree plot(bwt.tree) plot(bwt.tree,type="u") # model selection bwt.cv <- cv.tree(bwt.tree) # R uses pruning as default # Splus uses shrinking as default # pruning in Splus bwt.cv <- cv.tree(bwt.tree,,prune.tree) # or bwt.cv <- cv.tree(bwt.tree,FUN=prune.tree) # size versus deviance plot(prune.tree(bwt.tree)) # cross-validated scores # (differences for pruning and shrinking) plot(bwt.cv) # pick the best tree from the above plot bwt.tree.b <- prune.tree(bwt.tree,best=7) plot(bwt.tree.b) text(bwt.tree.b)