
Chapter 10

Introduction to Time Series Analysis

A time series is a collection of observations made sequentially in time. Examples
are daily mortality counts, particulate air pollution measurements, and tempera-
ture data. Figure 1 shows these for the city of Chicago from 1987 to 1994. The
public health question is whether daily mortality is associated with particle levels,
controlling for temperature.
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We represent time series measurements with Y1, . . . , YT where T is the total num-
ber of measurements. In order to analyze a time series, it is useful to set down a
statistical model in the form of a stochastic process. A stochastic process can be
described as a statistical phenomenon that evolves in time. While most statistical
problems are concerned with estimating properties of a population from a sample,
in time series analysis there is a different situation. Although it might be possible
to vary the length of the observed sample, it is usually impossible to make multiple
observations at any single time (for example, one can’t observe today’s mortality
count more than once). This makes the conventional statistical procedures, based
on large sample estimates, inappropriate. Stationarity is a convenient assumption
that permits us to describe the statistical properties of a time series.
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10.1 Stationarity

Broadly speaking, a time series is said to be stationary if there is no systematic
trend, no systematic change in variance, and if strictly periodic variations or sea-
sonality do not exist. Most processes in nature appear to be non-stationary. Yet
much of the theory in time-series literature is only applicable to stationary pro-
cesses.

One way of describing a stochastic process is to specify the joint distribution of
the observations Y (t1), . . . , Y (tn) for any set of times t1, . . . , tn and any value
of n. A time series is said to be strictly stationary if the joint distribution of
Y (t1), . . . , Y (tn) is the same as that of Y (t1 + h), . . . Y (tn + h) for all t1, . . . , tn
and h. To see how this is a useful assumption, notice that the above condition
implies that the expected value and covariance structure of any two components,
Ya(t) and Yb(t), of a time series are constant in time

E{Ya(t)} = µa , var{Ya(t)} = σ2

a and corr{Ya(t), Yb(t + h)} = γab(h). (10.1)

The function γab(h) is called the cross-correlation function if a 6= b and the auto-
correlation function if a = b.

In practice it is often useful to define stationarity in a less restricted way than that
described above. In many cases, the statistical structure of the processes can be
completely described with the second-order properties of equation (10.1). We can
estimate the quantities in (10.1) using standard statistical procedures, for example
we may estimate the cross-correlation at lag h, γa,b(h) with the sample correlation
of Ya(1), . . . , Ya(T − h) and Yb(h + 1), . . . , Yb(T ).

10.1.1 An example: Fetal Monitoring

Measurements of fetal heart rate (FHR) and fetal movement (FM) are generated by
maternal-fetal monitoring. Approximately 5 measurements per second are taken
during 50 minutes on 120 subjects that are monitored at 20,24,28,32,36, and 38-
39 weeks of gestation. Both FHR and FM are recorded giving us a multiple time
series Y (t), t = 1, . . . , 50× 60× 5, where Y (t) is a vector with 2 entries.
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The association between accelerations of FHR and FM has been documented since
the 1930s. For example, it has been observed that in the third trimester most
large fetal heart accelerations are associated with fetal activity. In Section 4.2
we will describe how relatively straight-forward time series techniques provide a
visual descriptions of how these associations vary with weeks gestation. These
description have motivated a methodology that will provide us is with a more
rigorous assessment of this relationship.

If we consider the FM and FHR measurements, seen in Figure 5, as outcomes
from a two component time series, we may consider the cross-correlation function
of these two components as a description of the association between these two
processes. Notice that the measurements taken for each fetus at each gestation
week has a cross-correlation function associated with them. In Figure 6, as a
descriptive plot, we show the average, over individuals, of these functions for
each gestation week. Notice that a peak at around the −6 second lag starts to
appear in the plot for the 24 week gestation. As the fetus gets older, this peak
grows and becomes more defined. This result can be considered a first step in the
characterization of the relationship between FM and FHR.
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10.2 Spectral Analysis

Sometimes it is useful to describe the properties of the time series in a frequency
domain. The spectrum is defined as

fab(λ) =
σ2

2π

∞
∑

h=−∞

γab(h) exp(−iλh)

There is a one-to-one correspondence between the spectrum and the autocovari-
ance function

σ2γab(h) =

∫ π

−π

f(λ) exp(iλh)dλ

We call |faa|
2 the power spectrum. A natural way of estimating a power spectrum

is using the periodogram which is the modulus of the Fourier transform of the data

I(λ) =
1

2πT
|

T
∑

t=1

Yt exp(−iλt)|2

We usually compute the periodogram at the Fourier frequencies λj = (2πj)/T, j =
1, . . . , T/2. These have desirable statistical properties

The periodogram is also useful for detecting periodicities (deterministic ones) in
the signal. It is a mathematical fact that if the data Y1, ...YT has a period p, the the
periodogram will have peaks at frequencies λ = 2πT/p and its multiples.
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10.2.1 An Application

Figured 4a and 4c shows recorded ECoG signal for two channels for a subject that
has received a sensory stimulus at some point during the recording. A straightfor-
ward way of estimating the spectrum of a stationary process is the periodogram

I(λ) =
1

2πT
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In Figures 4b and 4c the periodogram of this data is shown. Brain researchers have
speculated that the so-called α (8 − 13Hz.), β (15 − 25Hz.), and γ (> 30Hz.)
bands of human brain signals can indicate functional activation of sensorimotor
cortex. Notice that the periodogram exhibits a peak around frequencies 10 Hz.,
20 Hz. and 60 Hz.. If we were to approximate the ECoG signal as a stationary
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processes, we would describe it as having periodic components around these fre-
quencies. However, we are interested in learning how the signal changes when the
subjects are given a stimuli. Thus it seems more appropriate to model the signal
as a non-stationary processes and study the time-varying spectral density.

A straightforward estimate of a time-varying spectral density would be the dy-
namic periodogram. Basically, for each time t0 we consider a window around that
point of size h(t0) and estimate a weighted periodogram

I(t0; λ) =
1

2πh(t0)
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Figures 4c and 4e show the estimated time-varying spectral densities for the sig-
nals of channels 19 and 20 (lighter colors represent higher values) The figure
seems to suggest that the α band changes power and frequency after the stimulus
(time 0).
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