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2 Principal Points

• Big data are (is) everywhere

• They (it) present opportunities and challenges

• My focus is on challenges generated by missing information on
I The sampling plan
I The reference population

• Theory and examples highlight the challenges and confer a degree of hope

• Guidance and a reprise provide the capstone



3 The drumbeat Big Data ::: Found data ::: Data Exhaust ::: All data

• Popular media and science publications sound the drum,

‘Big Data’ will drive our future, from translating genomic information into
new cancer therapies to harnessing the Web for untangling complex social
interactions or detecting infectious disease outbreaks2

• ‘Datafication’ of everything

• Features of ‘pure’ big data
I VVV: Volume, Velocity, Variety
I Organic creation
I Passive data collection
I Instability

• The Statistico-centric world must cohabitate with the data-centric world

The End of Theory: The Data Deluge Makes the Scientific Method Obsolete
https://www.wired.com/2008/06/pb-theory/

2
Davidian & Louis (2012). Why Statistics? Science, 336: p12)



4 Big Data to the rescue?

Take a daily, ‘big data’
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5 Care is needed

• ‘Big data’ does not imply big, relevant or valid information

• Science requires uncovering causal relations; while Big Data has produced
interesting and important predictions & associations, care is needed to move
from these to explanation, causation and transportability3

• Issues and challenges include,
I Instability of the data generating process
I Bias, confounding and poorly informed representation as threats to validity

• Modern techniques can improve validity, but are unlikely to be fully successful

• There are definite roles for Big Data, but in many contexts they should
supplement/complement and not replace well-curated data

3
Pearl J, Bareinboim E (2014). External Validity: From do-calculus to Transportability across Populations. Statistical Science, 29:

579–595



6 Importance of the sampling plan

• The sampling plan determines the scope of and methods for inference

• There is always a sampling plan, and here are some examples:
I Random, stratified random, cluster, sno-ball
I Haphazard, convenience, as they arrive (a series)
I “I have no idea”

• Selection effects, informative dropouts and other types of missing data affect
sample representation

• If you know the sampling weights, even for the observed sample, you have a

representative sample, of some population
I Need an identified reference population to complete the connection

My focus is on missing or incomplete information
on the sampling plan and reference population
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7 Estimating a Population Mean
(Imagined Hospital Length of Stay, LOS, data)

• Estimate the average LOS for hospitals in a specific domain

• Assume the target population consists of 5 hospitals, that a random sample of

nj medical records from hospital j is obtained
I σ2

j ≡ σ
2

Observed Information Population Information
# sampled % of total Mean Sampling Hospital % of total Patient relative

Hospital nj sample 100fj LOS (Yj ) Variance size pop. 100pj propensity (fj/pj )

1 30 20 25 σ2/30 100 10 2.00 = 20/10

2 60 40 35 σ2/60 150 15 2.67

3 15 10 15 σ2/15 200 20 0.50 = 10/20

4 30 20 40 σ2/30 250 25 0.80

5 15 10 10 σ2/15 300 30 0.33
TOTAL 150 100 1000 100

• The sample is not self-weighting; some patient relative propensities 6= 1.00

• It is representative because the relative propensities are known



8 Weights, weighted averages and relative variances

Hospital-specific Variance Ratio
Estimator Weights (w) µ̂(w) 100×( Var/minVar)

Minimum Variance .20 .40 .10 .20 .10 29.5 100
Equally weighted .20 .20 .20 .20 .20 25.0 130

Unbiased .10 .15 .20 .25 .30 23.8 172

• ‘Minimum variance’ and ‘Equally Weighted’ are available from the sample
information

• ‘Unbiased’ depends on the relative propensities, which require frame and
sampling plan information



Are non-probability samples informative?
• Many state that nonprobability, ‘volunteer samples,’ can’t be used for

population estimates because the necessary weights aren’t available,

The debate over probability vs. nonprobability samples is about
representation.4

• However, would you rather have 60% response rate from a well-designed and

conducted (Gallup) survey or a 95% rate from a self-selected group?
I Advantage Gallup: The 60% is also self-selected, but information on the

relation of respondents to non-respondents is available from the sampling
frame and generalizing from the sample is possible

I Non-probability has potential: There may be other data that can be used
to develop reasonable weights for some reference population

◦ Use all data (big, small, in-between) to help identify the population
and compute weights

• Analogously, in clinical trials most causal questions are not protected by
randomization, are not ITT, but careful, causal analysis can be valid

I For analogies between non-probability surveys and causal inference, see5

4
Keeter (2014). Change Is Afoot in the World of Election Polling amstat news, October: 3-4.

5
Mercer, Kreuter, Keeter, Stuart (2017). Theory and Practice on nonprobability surveys, Parallels

between causal inference an survey inference (with discussion). Public Opinion Quarterly, 81: 250–279.



10 Xiao-Li Meng’s Cautionary Tale6,7

(A big sample size, n, may not save the day)

• Compare the MSE for two estimators of the finite population mean
(ȲN), N large

ȳsrs : Sample mean of a simple random sample of size nsrs = 100
ȳsel : A self-selected, web sample of size nsel

• With ρ(Y,π) = cor(Y, inclusion propensity) = 0.05, and frac = nsel/N,

MSEsel ≤ MSEsrs ⇐⇒ frac ≥ 20%

• For example, N = 50M requires nsel ≥ 10M to beat the SRS with nsrs = 100 (!)

• Good information on ρ(Y,π) is needed to rescue the situation

A large sampling fraction, n/N, may not be protective

• More on this later

6
Meng’s discussion of Keiding&Louis (2016)

7
Meng (2018). Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data

Paradox, and the 2016 Presidential Election. Annals of Applied Statistics, 12: 685–726.



11 Validation from population-level databases
A finding that did not generalize

• In the Nordic countries individual record linkage to detailed population registries
sometimes allows validation of the representativity of a study cohort, which is
always at least partly based on volunteers

• Andersen et al. (1998)8 compared mortality of participants in 3 cohorts
recruited in the Copenhagen area to the general mortality in that area

• There is a risk of bias if other causes for the disease under study or confounders
are not taken into account and are differently distributed among the participants
and the target population

• Many factors associated with disease and death differ between participants and
non-participants either because they are implicit in the selection criteria or
because of the self-selection

• The analysis showed survivor selection in all cohorts (recruited participants
being healthier at baseline than non-recruited individuals), which persisted
beyond ten years of observation for most combinations of age and sex

8
(1998) A comparison of mortality rates in three prospective studies from Copenhagen with mortality

rates in the central part of the city, and the entire country. European J. of Epidemiology, 14: 579–585



12 Validation from population-level databases
A finding that did generalize

• Results from clinical trials on breast-conserving operations
appear applicable to all Danish women9

• The Danish Breast Cancer Cooperative Group (DBCG) coordinates breast
cancer therapy in Denmark, where almost all women are treated for free at the
public hospitals

• Many RCTs on adjuvant therapy have been conducted with sampling frame all
Danish women, suitably stratified (e.g., by age and/or menopausal status)

• From 1982 to 1989 a randomized trial compared breast conserving surgery to
total mastectomy, and subsequently breast conserving therapy was offered as
option to qualifying patients across Denmark

• The population-based registry of the DBCG allowed population-based follow-up

1989-98, finding that:
Women younger than 75 years and operated on according to the
recommendations, had survival, loco-regional recurrences, distant
metastases and benefit from adjuvant radiotherapy closely matching the
results from the clinical trial

• See also10

It helps to be in Scandinavia!

9
Ewertz et al. (2008) Breast conserving treatment in Denmark, 19891998. A nationwide population-based

study of the Danish Breast Cancer Co-operative Group. Acta Oncologica, 47, 682–690.
10

Hviid, Hansen, and Frisch, Melbye (2019). Measles, Mumps, Rubella Vaccination and Autism: A Nationwide
Cohort Study. Annals of Internal Medicine, 10.7326/M18-210.
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13 Big Data and Data Synthesis11,12

• Basic scenario: Have an internally valid, small(ish) study, and stable but

possibly reduced dimension, external information
I e.g, the joint distribution of a subset of the small study variables

• Approach: Constrain the small study estimates to be compatible with the
externally determined relations

I Analogous to stabilizing interior estimates in a contingency table by
‘benchmarking’ to marginal distributions estimated from other data

I And to using external prevalence data to allow a case-control study to
estimate a relative risk

• Key issue: Are stochastic features of the external data sufficiently similar to the
relevant components of the small data to reduce MSE

I Resonates with external validity, representativity of a sample, transporting
within-sample estimates to a reference population, . . .

11
Chatterjee, et al. (2016). Constrained Maximum Likelihood Estimation for Model Calibration Using

Summary-level information from External Big Data Sources (with discussion). JASA, 111: 107–131.
12

Louis, Keiding (2016). Discussion of, Chatterjee et al. 123–124.



14 Design-based: The basic setup

• Finite population: U = {1, 2, . . . ,N}

• Values of interest: Yk , k ∈ U
I The Yk are a set of fixed, but unknown numbers,

not necessarily from a probability distribution

• Draw a sample S ∈ U with,
I pr(unit k ∈ S) = πk > 0 (can depend on covariates)
I pr(k, ` ∈ S) = πk`
I pr(k1, . . . , kn ∈ S) = πk1k2...kn

• Goal: Estimate a function of the Yk , any function, but here
the population total or mean

total: T (Y) =
N∑

k=1

Yk mean: A(Y) =
T (Y)

N



15 The weighting game

• Sample membership indicators:

Zk =

{
1, k ∈ S
0, k /∈ S

E(Zk ) = πk E(ZkZ`) = πk`

• The Zk are random variables; the Yk are constants

• The Horvitz-Thompson, unbiased estimate of T and nearly unbiased of A:

T̂ = HT [Yk ] =
∑
k∈S

Yk

πk
=
∑
k∈U

ZkYk

πk

Â =

∑
k∈S

Yk
πk∑

k∈S
1
πk

=

∑
k∈U

ZkYk
πk∑

k∈U
Zk
πk

• Alternatively, include a flexible function of the πs as a covariate in a regression
with the observed Yk as dependent variable13

I The goal is to make the selection probabilities ‘ignorable’

13
Little (2012). Calibrated Bayes, an Alternative Inferential Paradigm for Official Statistics (with discussion)

Journal of Official Statistics, 28: 309-372.
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16 The good news and the cautions

• If the πk are correct, the estimator is unbiased w/o needing a model for the Yk s

• However, in many surveys producing the πk is complicated, and computing the
πk` is (complicated)2

I Non-response, imputation, etc. must be accommodated

• Variance computations are also complicated

• Inferences for non-linear functions on the Y s can be challenging

• Validity depends on good values for the πs, but big data has little or no
information on the πk , let alone the πk`



17 Generalizing a clinical trial: Internal vs External Suicide Rates

• Pooled clinical trial suicide rates compared to the age-adjusted rates
in the nationally representative, Youth Risk Behavior Survey (YRBS)14.

• These discrepancies, even after adjustments, highlight the challenges

14
Greenhouse, Kaizar, Kelleher, Seltman, Gardner (2008). Generalizing from clinical trial data: a case study. The risk of suicidality

among pediatric antidepressant users. Statistics in Medicine, 27: 1801-1813



18 Generalizing clinical trials and other studies15,16,17

• There are three, principal approaches to generalization/transportation:
I Weighting by sample inclusion propensities
I Flexible regression modeling or machine learning with propensities as a

subset of regressors

◦ Applying the model using a target population covariate distribution
I A combination of the two (double-robustness, targeted MLE)

• Prerequisites for each approach are,
I Identification of a reference population
I Measurement of covariates that associate with trial (sample) membership

and with treatment (more generally, a relation of interest)
I The usual ignorability assumptions (hopes)

• The regression approach can proceed with only data from the observed sample,
opening the door to progress in the big data context

15
Ackerman, et al. (2019). Implementing statistical methods for generalizing randomized trial findings to a

target population. Addictive Behaviors, 94: 124–132.
16

Nguyen, et al. (2018). Sensitivity analyses for effect modifiers not observed in the target population when
generalizing treatment effects from a randomized controlled trial: Assumptions, models, effect scales, data
scenarios, and implementation details. Plos one, e0208795.

17
Stuart et al. (2018). Generalizability of randomized trial results to target populations: Design and analysis

possibilities. Research on social work practice, 28: 532–537.



19 Regression using only the observed sample

• Propensities aren’t available, but if covariates are available, employ them via
flexible regression modeling or machine learning

• Bias can be reduced by building a rich regression model with covariates that
I Associate with the dependent variable (empirically assessable)
I Associate with sample inclusion (not empirically accessible)

• You may not know,
I if the observed covariates associate with selection, but if they do, then

RegML will provide at least a partial adjustment for selection effects, and
move towards ignorability

I the target population, but using data bases you can apply the regression
structure to a posited population covariate distribution, with a key
assumption being that the selection process is applies

• Obtain relevant data on the target population using big data, data melding, . . .

• Sensitivity analysis is essential

• Design, collect what you can, especially what you think associates with selection



20 Gaussian data with informative sample size

Yk ∼ N

(
θk ,

σ2

nk

)

θ̄ = K−1
∑
k

θk (population mean)

ˆ̄θmle =

∑
k nkYk∑
k nk

(biased, if cor(θk , nk ) 6= 0)

ˆ̄θube = Ȳ =
1

K

∑
k

Yk (unbiased, but higher variance)

Covariate adjusted approach: flexible spline or polynomial in the nk :

Yk = β0 + flexible(nk )

ˆ̄θregr = β̂0 +
1

K

∑
k

flexible(nk )



21 Comparisons

• Create nk with a specified E(n) = n̄ and ratio = n̈/n̄

• Produce θk with E(θ) = 0,V (θ) = τ2 and various ρ = cor(θk , nk ),

• Polynomial regression:

I Select d ≥ 0 and β = (β0, . . . , βd )
I ζk =

∑d
ν=0 βνn

ν

I θk = the ζk adjusted to have mean 0 and variance τ2

I Fit using: lm(Y ∼ poly(n, d),weights=n)



22 Results (computations)

• n̈ the harmonic mean, V (ˆ̄θmle)/V (ˆ̄θube) = n̈/n̄ ≤ 1.0

• K = 20, σ2 = 20, n̄ = 5

• ∆ = bias of the MLE; ρ = cor(θk , nk ), true d = 6

Column headings are (ρ,∆)

Vmle/Vube = 0.325 Vmle/Vube = 0.714

Method (0,0) (0.41, 0.72) (0.41, 2.16) (0.33, 2.16) (0.41,0.95)
MLE 32 117 791 791 392

Regr d = 1 60 103 445 445 155
d = 2 77 102 298 298 112
d = 3 87 101 208 208 103
d = 4 93 100 156 156 101
d = 5 96 99 128 127 100
d = 6 98 98 98 113 100

100× MSE
MSEube

Summary

• A well-constructed regression approach is generally effective



23 Meng’s law of large populations18

G = population data N = population size
n = sample size f = n/N, sampling fraction
R = sample inclusion indicator

Discrepancy = Ḡn − ḠN = ρR,G ×
√

1− f

f
× σG

Data Data Problem
Quality Quantity Difficulty

MSER = ER{ρ2
R,G} ×

(
1− f

f

)2

× σ2
G

• ER is expectation wrt the distribution of R, conditional on R+ = n

• For Simple Random Sampling, ER{ρ2
R,G} ∝ N−1 and so MSER = O(n−1) as it

is for many other probability-based sampling plans

• For non-probabilistic sampling MSER might not converge to 0 as n increases

18
Meng (2018). Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data

Paradox, and the 2016 Presidential Election. Annals of Applied Statistics, 12: 685–726.



24 Guidance and Challenges
Guidance
• Data Melding:19 With inputs from a variety of sources, sampling plans,

measurement systems, . . .
I Harmonize inputs to the degree possible
I Combine over inputs by calibrating biases, and building a (Bayesian)

latent structure model (a rosetta stone) to sort out relations20,21

• Collect several covariates, especially those that potentially associate with both
the target of inference and the selection process, and include flexible functions
of them in a regression or use a machine learning approach

• Use administrative records and other databases to help identify reference
populations and sampling fractions

• Measure attributes you may not need to meet current study goals, but that can
help transport findings to another context

• Conduct aggressive sensitivity analysis
Challenges
• Meng: Information may not increase with sample size; bias will likely persist
• Quantifying variability22

Statistical concepts and techniques are essential for success

19
Louis TA (1989). Meta Modeling. Section 1.1 ‘Biometrics,’ In, Challenges for the ‘90s. ASA.

20
Lohr SL, Raghunathan, TE (2017). Combining Survey Data with Other Data Sources.

Statistical Science, 32: 293–312.
21

Mugglin and Carlin (1998). Hierarchical modeling in Geographic Information Systems: population
interpolation over incompatible zones. J. of Agricultural, Biological, and Environmental Statistics, 3: 111-130.

22
See, Lohr’s, Measuring Uncertainty with Multiple Sources of Data

http://washstat.org/presentations/20190610/20190610_Lohr.pdf
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