Practical machine learning: methods and algorithmics

News

Tentative Course Schedule

  1. Background (pdf)
  2. Introduction to regression and prediction (1/25) (pdf) (R code)
  3. Linear methods for regression (1/27,2/1) (pdf) (R code)
  4. Linear methods for classification (2/3,2/15) (pdf) (R code)
  5. Tree-based methods for regression and classification (2/15) (pdf) (R code)
  6. Model selection and assessment (2/22,2/24) (pdf) (R code)
  7. Methods for high-dimensional problems (3/1) (pdf)
  8. Smoothing (3/3, 3/8) (pdf)
  9. Support vector machines (3/10) (pdf)
  10. Ensemble methods (3/15) (pdf)
  11. Unsupervised methods (3/17) (pdf)

Resources

Course Information

Assignments

  1. Homework 1 can be found here
  2. Homework 2 can be found here
  3. Homework 3 can be found here

Project

There is an open project. Details here